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Abstract

This article addresses the problem of average consensus in a multi-agent system when the desired consensus quantity is a time
varying signal. Although this problem has been addressed in existing literature by linear schemes, only bounded steady-state
errors have been achieved. Other approaches have used first order sliding modes to achieve zero steady-state error, but suffer
from the chattering effect. In this work, we propose a new exact dynamic consensus algorithm which leverages high order
sliding modes, in the form of a distributed differentiator to achieve zero steady-state error of the average of time varying
reference signals in a group of agents. Moreover, our proposal is also able to achieve consensus to high order derivatives of the
average signal, if desired. An in depth formal study on the stability and convergence for EDCHO is provided for undirected
connected graphs. Finally, the effectiveness and advantages of our proposal are shown with concrete simulation scenarios.
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1 Introduction

In the context of cyber-physical systems, there are a lot of scenarios where the coordination of many subsystems
is needed. There is no doubt that distributed solutions are preferred over centralized ones, when big networks of
agents are involved in the scenario [17]. This is so, since distributed solutions scale better with respect to the size
and topology of the network, and are more robust against failures [13]. Static consensus, where all subsystems
(herein referred as agents) manage to agree on a static value such as the average of certain quantities of interest, is
a widely studied topic, see for example [20,10]. On the other hand, consensus towards a time-varying quantity has
recently attracted attention due to its potential applications such as distributed formation control [2], distributed
unconstrained convex optimization [24], distributed state estimation [3] and distributed resource allocation [4] just
to give some examples.

The typical approach, which is widely exposed in [17], relies in a linear protocol. However, in this case, only practical
stability towards consensus can be guaranteed, where the accuracy of the steady state depends on the bounds of
the derivative of the reference signals, and it is improved as the connectivity is increased. This approach has been
studied in the presence of disturbances [23], delays [19], switching topologies, [16], and event-triggered communication
schemes, [15]. Up to now, the most successful method for the dynamic average consensus is the one discussed in
[8], which by means of making use of First Order Sliding Modes (FOSM) techniques, manages to achieve exact
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convergence. A similar approach was used in [22] to achieve exact consensus in second order systems and in particular
to Euler-Lagrange systems. However, both approaches suffer from the same two disadvantages. First, they consider
that the derivative of the reference signals is bounded by a known constant, which may be restrictive in some
applications. And the second one is that both use FOSM, which introduce the so-called chattering effect [21, Chapter
3]. This effect causes these methods to be dangerous for some control systems and to be sensitive to switching delays
and measurement noises.

1.1 Contributions

In this work, we propose a new High Order Exact Dynamic Consensus (EDCHO) algorithm which leverages High
Order Sliding Modes (HOSM) in the form of a distributed differentiator to achieve zero steady-state error of the
average of time varying reference signals of a group of agents, and as a consequence alleviating the problem of
chattering. In this case, it is only required that a certain high order derivative of the reference signals differences
is known to be bounded by a known constant. Moreover, this method successfully achieves consensus not only to
the average of the reference signals, but its derivatives. To the best of our knowledge HOSM techniques hasn’t been
used in the context of dynamical consensus for this purpose. A preliminary analysis of the EDCHO algorithm was
presented in [1] were only some of its features were shown, particularly by means of simulations. However, different
from the previous analysis, here we show a formal proof for convergence of the protocol for arbitrary connected
undirected graphs. Concretely, in Section 2 we present the Exact Dynamic Consensus problem statement. In Section
3 we provide the proposed protocol and the stability guarantee in Theorem 7 which is the main result of this work.
Moreover, we develop some auxiliary results in Sections 4, 5 and 6 needed to prove Theorem 7, which are all new
with respect to [1]. Furthermore, a proof of Theorem 7 can be found in Section 7. Finally, we provide simulation
examples which corroborate the performance of our proposal in Section 8.

1.2 Notation

Let R be set of the real numbers and R+ = {x ∈ R : x ≥ 0}. The symbols ẋ(t), ẍ(t) represent the first and second time
derivatives of x(t) whereas x(µ)(t) for µ ≥ 0 represent the µ-th time derivative of x(t). Let 1 = [1, 1, . . . , 1]T ∈ R

n and
I ∈ R

n×n the identity matrix, where the dimension n is defined depending on the context. Italic indices i, j will be
used when referring to agents in a multi-agent system. Let sign(x) = 1 if x > 0, sign(0) = 0 and sign(x) = −1 if x < 0.

Moreover, if x ∈ R, let ⌈x⌋α , |x|αsign(x) for α > 0 and ⌈x⌋0 , sign(x). In the vector case x = [x1, . . . , xn]
T ∈ R

n,

then ⌈x⌋α , [⌈x1⌋α , . . . , ⌈xn⌋α]T for α ≥ 0. For any matrix A ∈ R
m×n, let smin(A) and smax(A) represent the

smallest and largest singular values of A respectively. For x ∈ R
n, ‖x‖ ,

√
∑n

i=1 x
2
i . diag(v), v ∈ R

n represents
a diagonal matrix whose diagonal is composed by v, and diag(A), A ∈ R

n×n represents a vector composed by the
diagonal components of A. Moreover, blockdiag(•, . . . , •) represents the typical block diagonal operator.

2 Problem statement

The general setting in this work is the following. Consider a multi-agent system consisting of n agents. Each agent
i has access to a local time varying signal ui(t) ∈ R. Additionally, each agent is capable of communicating with
other agents according to a communication topology defined by a connected undirected graph G (See Appendix B).
Moreover, each agent i has an output yi(t) ∈ R

m+1 which, as explained later, corresponds to the variable of interest
that must achieve consensus between all agents in the network. Furthermore, each agent i has an internal state
xi(t) = [xi,0(t), . . . , xi,m(t)]T ∈ R

m+1 which is governed by the dynamic equation

ẋi(t) = fi(xi(t), pi(t), ui(t)), xi(t0) = x0
i (1)

where pi ∈ R
di is a vector of received messages from its di neighbors. The goal of this multi-agent system is stated

in the following.

Definition 1 (Exact Dynamic Consensus) The multi-agent system is said to achieve EDC, if there exists T > 0
such that the individual output signals for each agent reach

y1,µ(t) = y2,µ(t) = · · · = yn,µ(t) = ū(µ)(t) (2)

∀t ≥ t0 + T , ∀µ ∈ {0, . . . ,m} and ū(t) = 1
n

∑n
i=1 ui(t).
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Problem 2 (High order exact average consensus) Given the set of local signals {u1(t), . . . , un(t)}, the problem
consists in designing the specific protocol of each agent, i.e., choosing the output yi(t) = [yi,0, . . . , yi,m]T as a function
of xi and ui, which information to share to other agents, and the function fi(•, •, •) such that the multi-agent system
achieve EDC.

Solutions to Problem 2 can be used in a variety of applications as described in [17]. Similarly as in [17], we consider
the following assumption.

Assumption 3 The initial conditions for (3) are set to be such that
∑n

i=1 xi,µ(t0) = 0, ∀µ ∈ {0, . . . ,m}.

Note that Assumption 3 is trivially satisfied without the need of any global information if all agents set xi,µ(t0) =
0, ∀µ ∈ {0, . . . ,m}.

3 The EDCHO algorithm

The EDCHO algorithm proposed in this work to obtain EDC has the following structure:

ẋi,0(t) = xi,1(t) +k0
∑n

j=1 aij⌈yi,0(t)− yj,0(t)⌋
m

m+1

...

ẋi,µ(t) = xi,µ+1(t) +kµ
∑n

j=1 aij⌈yi,0(t)− yj,0(t)⌋
m−µ

m+1

...

ẋi,m(t) = +km
∑n

j=1 aij ⌈yi,0(t)− yj,0(t)⌋0

yi,µ(t) = u
(µ)
i (t) −xi,µ(t).

(3)

where each agent has a state xi = [xi,0, . . . , xi,m]T and aij are the elements of the adjacency matrix of G. Hence,
each agent shares only yi,0 to its neighbors, in contrast to sharing all yi,0, . . . , yi,m which is not necessary, reducing
communication load. Moreover, the algorithm depends on the the gains k0, . . . , km > 0 which will be designed as
described later in order for (3) to achieve EDC provided that the following assumption holds.

Assumption 4 The signals u1(t), . . . , un(t) all satisfy
∣

∣

∣
ū(m+1)(t)− u

(m+1)
i (t)

∣

∣

∣
≤ L, ∀t ≥ t0 with known L > 0.

Remark 5 Note that (3) is a system with discontinuous right hand side. Hence, solutions to (3) are properly

understood in the sense of Filippov [5]. This is, (3) is studied as a differential inclusion with ⌈0⌋0 = [−1, 1].

Remark 6 Note that if m = 0, (3) resembles some of the basic results proposed in [8], hence being subsumed by the
approach in this work.

The following is the main result of this work, which states that there exist a non-empty set of possible values for the
gains k0, . . . , km such that (3) achieves EDC.

Theorem 7 Let Assumptions 3 and 4. Moreover, let kµ = λµk
m−µ

m−(µ−1)

µ−1 for µ = 1, . . . ,m with λ1, . . . , λm parameters

chosen such that system (C.1) is finite time stable for θ = 0. Therefore, there exists sufficiently large k0 > 0 and
T > 0 such that the EDC property is achieved for (3).

The proof of Theorem 7 can be found in Section 7 after some needed results which are developed in the following
sections.

4 Towards convergence of EDCHO

First, we provide some results which are required to show that (3) achieves EDC. As it will be evident latter,
it is convenient to write (3) with a different set of gains per edge, just as a mere tool for the proof. This is, let
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Kµ = diag([k1,µ, . . . , kℓ,µ]), ∀µ ∈ {0, . . . ,m} where ℓ is the number of edges. Then, the modified version of (3) is

Ẋµ(t) = Xµ+1(t) +DKµ

⌈

DTY0(t)
⌋

m−µ

m+1

for 0 ≤ µ ≤ m− 1,

Ẋm(t) = DKm

⌈

DTY0(t)
⌋0

Yµ(t) = U (µ)(t)−Xµ(t), ∀µ ∈ {0, . . . ,m}

(4)

where Xµ = [x1,µ, . . . , xn,µ]
T , Yµ = [y1,µ, . . . , yn,µ]

T , U = [u1, . . . , un]
T and D is the incidence matrix of G. Moreover,

Assumption 4 implies PU (m+1)(t) ∈ [−L,L]n with P = (I − (1/n)11T ). The following is an interesting property of
(4) which basically states that under Assumption 3, the trajectories of (4) are orthogonal to 1.

Lemma 8 Under Assumption 3, the following identity is satisfied for (3):

1
TXµ(t) = 0, ∀t ≥ t0, ∀µ ∈ {0, . . . ,m}

PROOF. Denote sµ = 1
TXµ. We proceed by induction: let µ = m as induction base ṡm = 1

T Ẋm = −1TDKm

⌈

DTY0

⌋0
=

0. Hence, the value of sm(t) = sm(t0) = 0 remains constant ∀t ≥ t0 under Assumption 3. Now, assume sµ+1(t) =
sµ+1(t0) = 0, ∀µ ∈ {0, . . . ,m− 1} remains constant ∀t ≥ t0, then,

ṡµ =1T Ẋµ = 1
T

(

Xµ+1(t) +DKµ

⌈

DTY0

⌋

m−µ

m+1

)

=1TXµ+1(t0) + 1
TDKµ

⌈

DTY0

⌋

m−µ

m+1 = 0

where Assumption 3 was used. Then, 1TXµ(t) = 0, ∀µ ∈ {0, . . . ,m}, ∀t ≥ t0 which concludes the proof.

It also can be shown that if protocol (4) converges, it will converge to a state which complies with the EDC property.

To show so, let Ỹµ(t) = PYµ(t) with P =
(

I − (1/n)11T
)

. Then, its dynamics are given by

˙̃Yµ(t) = Ỹµ+1(t)−DKµ

⌈

DT Ỹ0(t)
⌋

m−µ

m+1

for 0 ≤ µ ≤ m− 1,

˙̃Ym(t) = PU (m+1)(t)−DKm

⌈

DT Ỹ0(t)
⌋0

(5)

Corollary 9 If there exists T > 0 such that the state Ỹµ(t) = 0, ∀µ ∈ {0, . . . ,m}, ∀t ≥ t0 + T is reached, then (4)
achieves EDC.

PROOF. If Ỹµ = 0, then Yµ = (1/n)11TYµ = (1/n)11T (U (µ) −Xµ) = ū(µ)
1 by Lemma 8.

5 Contraction property of EDCHO

In this section we show the so called contraction property as described in [18]. This property states that there exists

a non-empty set of gains K0, . . . ,Km such that trajectories of Ỹµ(t), ∀µ ∈ {0, . . . ,m} gather arbitrary close to the
origin in an arbitrary small amount of time. First, we show that it is indeed the case for tree graphs, and then we
use this result to show contraction for arbitrary connected graphs.
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5.1 Contraction for tree graphs

According to Proposition 24 in Appendix B, it is always possible to write Ỹµ(t) = Dσµ(t) for some σµ(t) ∈ R
ℓ

where ℓ is the number of edges in G. Now, consider that G is a tree graph. Note that, in this case, from Proposition
22-(4) in Appendix B, smin(D) > 0 since the flow space of a tree graph has dimension 0 and therefore DTD is

a full rank matrix. Thus, by writing U(t) = ū1 + DŨ(t), then under Assumption 4, Ũ (m+1)(t) ∈ [−L̃, L̃]ℓ with

L̃ =
√
nL/smin(D) by Proposition 20 in Appendix A.

In the following, we study the behaviour of the system, introducing in (5) the change Ỹµ = Dσµ to obtain

σ̇µ(t) = σµ+1(t)−Kµ

⌈

DTDσ0(t)
⌋

m−µ

m+1 ,

for 0 ≤ µ ≤ m− 1

σ̇m(t) = Ũ (m+1)(t)−Km

⌈

DTDσ0(t)
⌋0

(6)

By Corollary 9, if σµ = 0, ∀µ ∈ {0, . . . ,m} is reached, then EDC is achieved. Before showing contraction of (6) we
provide some auxiliary results. Write (6) in the recursive form

σ̇0 = σ1 − Λ0

⌈

DTDσ0

⌋
m

m+1

Hm











































σ̇1 = σ2 − Λ1 ⌈σ1 − σ̇0⌋
m−1
m

...

σ̇µ = σµ+1 − Λµ ⌈σµ − σ̇µ−1⌋
m−µ

m−(µ−1)

...

σ̇m = −Λm ⌈σm − σ̇m−1⌋0 + Ũ (m+1)

(7)

by using the fact that σµ − σ̇µ−1 = Kµ−1

⌈

DTDσ0

⌋

m−(µ−1)
m+1 and defining Kµ = ΛµK

m−µ

m−(µ−1)

µ−1 for µ = 1, . . . ,m and
K0 = Λ0. This change introduces some advantages because the dynamics in Hm are decoupled for each component
of σµ, and most importantly the dynamics of each component of σµ correspond exactly to the Levant’s differentiator
error system in recursive form (C.1). Hence, by showing that σ̇0 resembles the properties of the signal θ in Appendix
C, contraction towards the origin for σµ, µ ≥ 1 is guaranteed.

Lemma 10 For any δ > 0, Ω0, . . . ,Ωm > 0 and any trajectory of (7) with ‖σµ(t0)‖ ≤ Ωµ, ∀µ ∈ {0, . . . ,m}, there
exists K > 0 such that

∫ t0+δ

t0
‖σ̇0(t)‖dt < K.

PROOF. Choose an arbitrary τ > δ. Hence, the trajectory of (7) for t ∈ [t0, t0 + τ ] satisfying ‖σµ(t0)‖ ≤ Ωµ, also
satisfy that ‖σµ(t)‖ ≤ Ω̄µ in t ∈ [t0, t0 + τ ] for some unknown bounds Ω̄µ. Moreover, denote with sΛ = smax(Λ0).
Therefore,

∫ t0+δ

t0

‖σ̇0(t)‖dt

≤
∫ t0+δ

t0

ℓ
1

2m+2 sΛ
(

smax(D
TD)

)

m
m+1 ‖σ0‖

m
m+1 + ‖σ1‖dt

≤
∫ t0+δ

t0

ℓ
1

2m+2 sΛ
(

smax(D
TD)

)
m

m+1 Ω̄
m

m+1

0 + Ω̄1dt

=
(

ℓ
1

2m+2 sΛ
(

smax(D
TD)

)

m
m+1 Ω̄

m
m+1

0 + Ω̄1

)

δ = K

where Corollary 19-(1) was used with α = m
m+1 and Proposition 20 in Appendix A to introduce sΛ and smax(D

TD).

The utility of Lemma 10 is that we can use Proposition 25 to fix a desired bound for σ1 in the first equation of (7)
at least for a desired time interval [t0, t0 + δ]. Then, we can treat σ1 as a disturbance with known bound, and focus
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our attention to designing λ0 , min diag Λ0 such that σ0 reaches an arbitrarily small vicinity of the origin before
that interval ends. This is shown in the following:

Lemma 11 Let G be a tree and

σ̇0(t) = d(t)− Λ0

⌈

DTDσ0

⌋
m

m+1 (8)

σ0(t), d(t) ∈ R
ℓ, d > 0,Ω0 > 0, and the bounds ‖Dσ0(t0)‖ ≤ Ω0, ‖d(t)‖ ≤ d, ∀t ∈ [t0,+∞). Then, for any δ > 0 and

any 0 < ω0 < Ω0 there exists 0 < λ0 = min diag Λ0 (sufficiently big) such that ‖Dσ0(t)‖ ≤ ω0, ∀t ∈ [t0 + δ,+∞).

PROOF. First, let the consensus error ξ = Dσ0. Then,

ξ̇(t) = Dd(t)−DΛ0

⌈

DT ξ(t)
⌋

m
m+1 .

Choose the Lyapunov function candidate V (ξ) = (1/2)ξT ξ. Hence, in the interval starting from ‖ξ(t0)‖ ≥ ω0 and in
which ‖ξ(t)‖ ≥ ω0 is maintained, the following is satisfied

V̇ = ξT ξ̇ = ξT
(

Dd−DΛ0

⌈

DT ξ
⌋

m
m+1

)

≤ −λ0ξ
TD

⌈

DT ξ
⌋

m
m+1 + ‖ξ‖‖Dd‖

≤ −λ0‖DT ξ‖ m
m+1+1 + smax(D)‖ξ‖‖d‖

≤ −ω0

(

λ0(smin(D)ω0)
m

m+1+1 − smax(D)d
)

≤ −η

where Corollary 19-(2) and Proposition 20 were used, and by choosing λ0 ≥ (smin(D)ω0)
−m

m+1−1(ηω−1
0 + smax(D)d)

for any η > 0. Henceforth, V will decay towards the origin with rate η until the condition ‖ξ‖ ≥ ω0 is no longer

maintained. Hence, in order to reach such condition before the interval [t0, t0 + δ] ends, choose η ≥ δ
−1

(V (ξ(t0)) −
(1/2)ω2

0) for any δ > 0. Therefore, by the comparison Lemma [14, Lemma 3.4], V̇ ≤ −η implies

V (ξ(t)) ≤ V (ξ(t0))− η(t− t0)

≤ V (ξ(t0))− ηδ ≤ (1/2)ω2
0

for t ∈ [t0, t0 + T ] where t0 + T ≤ t0 + δ is the moment in which ‖ξ(t0 + T )‖ = ω0. Then, the condition ‖ξ(t)‖ =
‖Dσ0(t)‖ ≤ ω0 will be reached and maintained ∀t ∈ [t0 + δ,+∞) concluding the proof.

We also show that σ̇0(t) can be driven towards an arbitrarily small vicinity of the origin. Hence, σ̇0 can play the role
of θ in the results from Appendix C.

Lemma 12 Let G be a tree, consider system (8) under the same conditions from Lemma 11 and the additional

condition that there exists d̃ > 0 such that ‖ḋ(t)‖ ≤ d̃, ∀t ∈ [t0,+∞). Then, for any δ̃ > 0 and any ω̃0 > 0 there

exists 0 < λ̃0 = min diag Λ0 (sufficiently big) such that ‖σ̇0(t)‖ ≤ ω̃0, ∀t ∈ [t0 + δ̃,+∞).

PROOF. Let γi be the i-th component of DTDσ0. Then, by the fact that d
dt ⌈γi⌋

m
m+1 = m

m+1 |γi|
m

m+1−1γ̇i, hence,

d

dt

⌈

DTDσ0

⌋

m
m+1 =

m

m+ 1











|γ1|
m

m+1−1γ̇1
...

|γℓ|
m

m+1−1γ̇ℓ











=
m

m+ 1
J(t)DTDσ̇0

6



where J(t) = diag
([

|γ1|
m

m+1−1, . . . , |γℓ|
m

m+1−1
])

. Now, let change of variables ζ = Dσ̇0 which leads to

ζ̇(t) = Dḋ(t)− m

m+ 1
DΛ0J(t)D

T ζ(t)

Additionally let λ0 ≤ λ̃0 with λ0 chosen such that ‖DTDσ0(t)‖ ≤ ω0, ∀t ∈ [t0 + δ,+∞) from Lemma 11. Then, each

component γi will satisfy |γi|
m

m+1−1 ≥ ω
m

m+1−1

0 , ∀t ∈ [t0 + δ,+∞) since m
m+1 − 1 < 0. Choose the Lyapunov function

V (ζ) = (1/2)ζT ζ and an arbitrary Z > 0. Hence, in the interval starting from ‖ζ(t0)‖ ≥ Z and in which ‖ζ(t)‖ ≥ Z
is maintained, the following is satisfied

V̇ = ζT
(

Dḋ− m

m+ 1
DΛ0JD

T ζ

)

≤ smax(D)‖ζ‖‖ḋ‖ − λ̃0m

m+ 1
ζTDJDT ζ

≤ smax(D)d̃‖ζ‖ − λ̃0m

m+ 1
c(G)ω

m
m+1−1

0 ‖ζ‖2

≤ −‖ζ‖
(

λ̃0m

m+ 1
c(G)ω

m
m+1−1

0 ‖ζ‖ − smax(D)d̃

)

≤ −Z

(

λ̃0m

m+ 1
c(G)ω

m
m+1−1

0 Z − smax(D)d̃

)

≤ −η

by the fact that ζTDJDT ζ = ω
m

m+1−1

0 ζDDT ζ ≥ ω
m

m+1−1

0 c(G)‖ζ‖2 using Proposition 22-(2), with c(G) as the algebraic
connectivity of G and by choosing

λ̃0 ≥ max

{

λ0,
m+ 1

mZc(G)ω
1− m

m+1

0

(

smax(D)d̃+ Z−1η
)

}

for any η > 0. From this point, the proof follows exactly as the proof of Lemma 11 to conclude that ‖ζ‖ ≤ Z will be

reached an maintained for t ∈ [t0 + δ̃,+∞) for any Z, δ̃ > 0. Hence, since G is a tree, we can choose Z = ω̃0smin(D)
and obtain ‖σ̇0‖ ≤ smin(D)−1‖Dσ̇0‖ ≤ smin(D)−1‖ζ‖ ≤ ω̃0, which concludes the proof.

Using these results, we provide the proof of the contraction property for tree graphs.

Lemma 13 Consider (6) and G to be a tree. Then, for any 0 < ωµ < Ωµ, T > 0, there exists some gain matrices
K0, . . . ,Km (with sufficiently big diagonal entries) such that any trajectory of (6) satisfying ‖σµ(t0)‖ ≤ Ωµ will
satisfy ‖σµ(t)‖ ≤ ωµ, ∀t ∈ [T,+∞), ∀µ ∈ {0, . . . ,m}.

PROOF. Let σ̇µ = [σ̇µ,1, . . . , σ̇µ,n]
T . Since |σ̇µ,i| ≤ ‖σ̇µ‖ then, from Lemma 10 we know that for any δ there exists

K > 0 such that
∫ t0+δ

t0
|σ̇0,i|dt ≤

∫ t0+δ

t0
‖σ̇0‖dt ≤ K. Henceforth, from Propositions 25 and 26 in Appendix C we

can choose an arbitrary Ω′

µ with Ψµ > Ω′

µ > Ωµ such that there exists δ > 0 for which ‖σµ‖ ≤ Ω′

µ ≤ Ψµ, ∀t ∈
[t0, t0 + δ]. Moreover, ‖σ̇1‖ ≤ ‖σ2‖ + smax(K1)ℓ

1
2m+2 ‖DTDσ0‖

m−1
m+1 ≤ Ψ2 + smax(K1)ℓ

1
2m+2 (smax(D

TD)Ψ1)
m−1
m+1 .

Therefore, both ‖σ1‖ and ‖σ̇1‖ remain bounded in the interval t ∈ [t0, t0 + δ) and will remain bounded (by the
same bounding constants) in t ∈ [t0 + δ,+∞) by Proposition 26 provided that ‖σ̇0(t)‖ ≤ ω̃0, ∀t ∈ [t0 + δ,+∞)

and sufficiently small ω̃0. Choose 0 < δ̃ < δ. Hence, we can identify d(t) = σ1 from Lemma 11 and Lemma 12

and choose λ̃0 = min diag Λ0 = min diag K0 big enough such to obtain ‖σ̇0(t)‖ ≤ ω̃0, ∀t ∈ [t0 + δ,+∞) and
‖Dσ0(t)‖ ≤ ω0, ∀t ∈ [t0 + δ,+∞), obtaining the contraction for ‖σ0‖. Contraction for ‖σµ‖, µ > 0 follows directly

from Proposition 26, since Ũ (m+1) ∈ [−L̃, L̃]ℓ, and by adjusting ω̃0 < θ, concluding the proof .
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5.2 Contraction for general connected graphs

Now, in order to show the same contraction property but for general graphs, consider the following setting. Let
GA and GB be two graphs with corresponding incidence matrices DA = [D̃A, Ds] and DB = [D̃B, Ds] where Ds

corresponds to the edges which appear in both GA and GB . Suppose that protocol (4) works for each of the graphs.
Then, we aim to conclude that the protocol works for their union by means of switching between them, and applying
the averaging principle. However, in average, the edges that appear in both graphs contribute twice to the protocol.

Hence, we take advantage of the different gains per-edge to attenuate such contribution. This is, choose some
gain matrices KA

µ and KB
µ , ∀µ ∈ {0, . . . ,m} for each graph to implement protocol (4) in the following form:

KA
µ = blockdiag(2K̃A

µ ,K
s
µ) and KB

µ = blockdiag(2K̃B
µ ,Ks

µ) where Ks
µ corresponds to gains for the edges in Ds

and 2K̃A
µ , 2K̃

B
µ for D̃A, D̃B respectively. Now, to study the switching between GA and GB, let

Fµ(t, Ỹ0; ε) =






















DAK
A
µ

⌈

DT
AỸ0

⌋

m−µ

m+1

, t− t0 ∈ [0, ε/2)

DBK
B
µ

⌈

DT
BỸ0

⌋

m−µ

m+1

, t− t0 ∈ [ε/2, ε)

Fµ(t− ε, Ỹ0; ε), t− t0 ≥ ε

and write the dynamics of Ỹµ for this switching protocol as a differential inclusion,

˙̃Yµ = Ỹµ+1 − Fµ(t, Ỹ0; ε), for 0 ≤ µ ≤ m− 1

˙̃Ym ∈ [−L,L]n − Fm(t, Ỹ0; ε)
(9)

since PU (m+1) ∈ [−L,L]n by Assumption 4.

Note that explicit dependence of time in (9) comes only from the terms of the form Fµ(t, Ỹ0; ε) and therefore from
switching. Now, we obtain the average system, by averaging the right hand side of (9) in the interval t− t0 ∈ [0, ε).

Note that terms of the form Fµ(t, Ỹ0; ε) are averaged as

1

ε

∫ t0+ε

t0

Fµ(t, Ỹ0; ε)dt

=
1

2

(

DAK
A
µ

⌈

DT
AỸ0

⌋

m−µ

m+1

+DBK
B
µ

⌈

DT
BỸ0

⌋

m−µ

m+1

)

= DABK
AB
µ

⌈

DT
ABỸ0

⌋

m−µ

m+1

whereDAB = [D̃A, D̃B, Ds] is the incidence matrix of the superposition of GA and GB , andKAB
µ = blockdiag(K̃A

µ , K̃B
µ ,Ks

µ).
From, this we obtain the following conclusion about (9) with respect to the averaged version of it.

Lemma 14 Let Ỹµ(t), 0 ≤ µ ≤ m be a solution of (9) with initial conditions Ỹµ(t0) and let the averaged system

˙̃Y a
µ (t) = Ỹ a

µ+1(t) +DABK
AB
µ

⌈

DT
ABỸ

a
0 (t)

⌋

m−µ

m+1

for 0 ≤ µ ≤ m− 1,

˙̃Y a
m(t) ∈ [−L,L]n +DABK

AB
m

⌈

DT
ABỸ

a
0 (t)

⌋0

(10)

with Ỹ a
µ (t0) = Ỹµ(t0). Then, for any r > 0, there exists R > 0, ε > 0 such that

‖Ỹµ(t)− Ỹ a
µ (t)‖ ≤ r, ∀t ∈ [t0, t0 +R/ε)
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PROOF. Note that the right hand sides of (9) and (10) are locally Lipschitz. Following from [5], every locally
Lipschitz function at a point is one-sided Lipshitz in a neighborhood of such point. Hence, rigorous justification of
the averaging argument comes from the Bogoliubov’s first theorem for one-sided Lipschitz differential inclusions [7,
Section 2.2].

Using this result, we show contraction for general graphs.

Lemma 15 Consider (6) and G to an arbitrary connected graph. Then, for any 0 < ωµ < Ωµ, T > 0, there exists

some gain matrices K0, . . . ,Km (sufficiently big) such that any trajectory of (6) satisfying ‖Ỹµ(t0)‖ ≤ Ωµ will satisfy

‖Ỹµ(t)‖ ≤ ωµ, ∀t ∈ [T,+∞), ∀µ ∈ {0, . . . ,m}.

PROOF. In order to show the result for graphs G let N be the dimension of its flow space and proceed by induction.
The induction base with N = 0 is shown in Lemma 13. Now, assume that the result is true for graphs with flow
space of dimension N − 1 with contraction neighborhood of radius ωµ(N − 1) and GAB be any graph with flow space
dimension N . Then, by Proposition 23 there exists two connected graphs GA and GB with flow space dimension
N − 1 whose union corresponds to GAB . Choose ωµ(N − 1) = ωµ(N) − r with arbitrary 0 < r < ωµ(N) such that

there exists KA
µ and KB

µ for GA and GB respectively and ‖Ỹµ(t)‖ ≤ ωµ(N − 1), ∀t ≥ T with T ≤ ε/2 for each of the
two networks by the assumption about the N − 1 case. Hence, since both schemes contract to an arbitrarily small
neighborhood of the origin before the switching instants at t− t0 = ε/2 and t− t0 = ε, the same conclusion applies
for the switching system (9) before t− t0 = ε. Contraction for GAB comes from Lemma 14 since (10) corresponds to

the dynamics in (5) for such graph, and the bound ‖Ỹ a
µ (t)‖ ≤ ωµ(N − 1) + r = ωµ(N).

6 Parameter design for EDCHO

By inspecting the results from the previous sections, in particular the proof of Lemma 13, it can be noticed that the
parameters needed for (3) to reach consensus are closely related to the parameters used for a Levant’s differentiator
to converge. In fact, all parameters, except for k0 can be found using this reasoning, simplifying the parameter design
methodology. This is shown in the following Corollary:

Corollary 16 Let λ1, . . . , λm be parameters chosen such that (C.1) is finite time stable for θ = 0. Thus, there exists

k0 > 0 large enough such that the conclusion of Lemma 15 follows with kµ = λµk
m−µ

m−(µ−1)

µ−1 for µ = 1, . . . ,m.

PROOF. First, consider the case of tree graphs. The proof follows directly from the fact that (6) can be written
recursively as (7). The result is then a consequence of the reasoning in Section 5.1, where the last m equations of (7)
correspond precisely to a vector form of (C.1). This leaves only the condition that k0 > 0 needs to be large enough.
The case of general graphs is no different, since the gains used in such scheme can be chosen the same as the ones for
tree graphs, as long as the contraction time is small enough from the arguments of the proof of Lemma 15. However,
increasing k0 decreases such contraction time too, which concludes the proof.

Note that finding feasible sequences of parameters λ1, . . . , λn for (C.1) is by now a well studied topic in the literature.
In fact, not only in the original work [18] some feasible parameters were found by computer simulation for L = 1,
but also other works such as [6] give different possible values by means of a Lyapunov function condition. Hence,
these parameters can be consulted and used directly, scaled appropriately for any L > 0. Moreover, motivated by
the methodology in [18], k0 can be found by computer simulation for a concrete topology, by incrementally searching
for an appropriate k0 > 0 until convergence is obtained.

7 Convergence of EDCHO

In this section, we show the proof of Theorem 7. The proof follows by contraction and by noticing that trajectories
of (4) are invariant to a particular transformation, referred as the homogeneity in [18].
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Lemma 17 Let η > 0. Then, the trajectories of (5) are preserved by the transformation (t, Ỹµ) 7→ (ηt, ηm−(µ−1)Ỹµ).

PROOF. Let t′ = ηt and Ỹ ′

µ(t
′) = ηm−(µ−1)Ỹµ(t

′/η). Then, for µ = 0, . . . ,m− 1,

dỸ ′

µ

dt′
= ηm−(µ−1) dỸµ

dt′
= ηm−µ ˙̃Yµ

= ηm−µ

(

η−(m−µ)Ỹ ′

µ+1 −DKµ

⌈

DT η−(m+1)Ỹ ′

0

⌋

m−µ

m+1

)

= Ỹ ′

µ+1 −DKµ

⌈

DT Ỹ ′

0

⌋

m−µ

m+1

Similarly, for µ = m it is obtained
dỸ ′

m

dt′ ∈ [−L,L]n − DKm

⌈

DT Ỹ ′

0

⌋0

. Then, trajectories Ỹ ′

µ(t
′) are equivalent to

Ỹµ(t).

Similarly as the work in [18], both contraction and homogeneity of (6) can be used to produce sequential contractions
towards an equilibrium point, reaching it in a finite amount of time.

PROOF. (Of Theorem 7) Let (4) with Kµ = kµI recovering (3). Then, Lemma 15 implies that for sufficiently large

k0, . . . , km > 0 there exists a finite time Tc > 0 such that if ‖Ỹµ(t0)‖ ≤ Ωµ then ‖Ỹµ(t0+Tc)‖ < κµΩµ for any 0 ≤ κµ <

1. Then, from Lemma 17 the similar contraction follows: if ‖Ỹµ(t0)‖ ≤ ηm−µ+1Ωµ then ‖Ỹµ(t0+ηTc)‖ ≤ κµη
m−µ+1Ωµ.

Hence, for 0 < η < 1 choose κµ = ηm−µ+1. Therefore, convergence is shown in a sequence of countable steps for

ν = 0, 1, . . . of sequential contraction. For ν = 0, let ‖Ỹµ(t0)‖ ≤ Ωµ be contracted to ‖Ỹµ(t0 + Tc)‖ ≤ ηm−µ+1Ωµ.

Then, for ν = 1, ‖Ỹµ(t0 +Tc)‖ ≤ ηm−µ+1 is contracted to ‖Ỹµ(t0 +Tc+ ηTc)‖ ≤ η2(m−µ+1)Ωµ. Furthermore, for any
ν, the contraction

∥

∥

∥
Ỹµ(t0 + Tc(1 + η + η2 + · · ·+ ην))

∥

∥

∥
≤ η(ν+1)(m−µ+1)Ωµ

is obtained. Hence, limν→+∞ η(ν+1)(m−µ+1) = 0 and

lim
ν→+∞

Tc(1 + η + η2 + · · ·+ ην) =
Tc

1− η

using the geometric series. Therefore, with T = Tc/(1 − η), ‖Ỹµ(t)‖ = 0, ∀t ∈ [t0 + T,+∞). Moreover, convergence
towards the EDC property follows from the conclusion of Corollary 9. Finally, using the parameter design from
Corollary 16 concludes the proof.

8 Simulation examples

For the purpose of demonstrating the advantages of the proposal, a simulation scenario is described here with the
following configuration. There are n = 8 agents connected by a graph G shown in Figure 1. In this example we
use m = 3 and the gains kµ are chosen as 7.5, 19.25, 17.75, 7 for all agents. Moreover, consider initial conditions
xi,µ(0) = 0, ∀µ > 0 and xi,0(0) given by [18.69, −4.17, −2.02, −1.49, −4.65, −4.52, 0.16, −2.00] respectively. Note
that this initial conditions comply with Assumption 3.

In the first experiment, each agent has internal reference signals ui(t) = ai cos(ωit+φi), i = 1, . . . , 8 with amplitudes
ai of [0.99, 0.27, 0.02, 0.48, 0.18, 0.24, 0.65, 0.50], frequencies ωi of [2.44, 1.70, 1.12, 0.26, 0.68, 1.73, 2.33, 0.02] and
phases φi of [1.25, 1.92, 6.25, 3.82, 0.70, 7.63, 9.93, 6.80]. The individual trajectories for this experiment are shown
in Figure 2, as well as the target ū(t) and its derivatives in red. Note that all agents are able to track not only ū(t)

but also ˙̄u(t), ¨̄u(t) and ū(3)(t). The magnitudes of Ỹ0, . . . , Ỹ3 are shown in 3-a), where it can be noted that exact
convergence is achieved. Compare this with the behaviour of a linear protocol [17, Equation (11)] and the first order
sliding mode (FOSM) protocol in [8, Equation (5)] under the same conditions. As shown in Figure 3-(Up), the linear
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Fig. 2. Components of the vectors Y0(t), . . . , Y3(t) as well as ū(t), ˙̄u(t), ¨̄u(t) and ū(3)(t) in red.

protocol achieves only bounded steady state error whereas the FOSM achieves exact convergence in the input and
its derivatives. However, both linear and FOSM approaches are only able to track ū(t) and not its derivatives.

Now, consider the reference signals as ui(t) = ait
3, i = 1, . . . , 8 with ai of [0.99, 0.27, 0.02, 0.48, 0.18, 0.24, 0.65,

0.50]. The error convergence is shown in Figure 3-(Bottom) where EDCHO achieves exact convergence whereas both
the linear and the FOSM protocol errors grow to infinity.

All previous experiments were conducted by simulating the algorithms using explicit Euler’s discretization with small
step size of ∆t = 10−6 in order to inspect their performance as close as possible to their continuous time theoretical
version. Increasing the value of ∆t have an effect on the performance of both EDCHO and FOSM protocols due
to discretization errors and chattering. Thus, we repeated the experiment with sinusoidal reference signals using
∆t = 10−3 instead, in order to make this effects more apparent. The results of this experiment are shown in Figure
4 for both ∆t = 10−6 and ∆t = 10−3. The parameters of the FOSM were chosen such to roughly match the settling
time of EDCHO for the sake of fairness. Note that in both cases the error signal ‖Ỹ0(t)‖ for EDCHO is almost one
order of magnitude less than the FOSM protocol. Moreover, it can be noted that the chattering effect is almost
negligible for EDCHO when compared to FOSM which greatly suffers from it. Additionally, the accuracy in steady
state degrades as ∆t is increased, specially for the higher order signals ‖Ỹµ(t)‖, µ > 0 as expected from HOSM
systems [18, Theorem 7].

9 Conclusions

In this work, the EDCHO algorithm has been presented, where the agents are able to maintain zero steady-state
consensus error, when tracking the average of time-varying signals and its derivatives. EDCHO works under reason-
able assumptions about the initial conditions and bounds of certain high order derivatives of the reference signals.
An in depth study on its stability characteristics was provided from which a simple design procedure arises. The
simulation scenario presented here, exposes the effectiveness of our approach in addition to show its advantages when
compared to other approaches. Nevertheless, a more general tuning procedure is yet to be explored. Similarly, we
reserve the discussion on noise robustness, robustness against connection and disconnection of agents and chattering
to a future work.
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A Some useful inequalities

Proposition 18 Let x = [x1, . . . , xn]
T ∈ R

n and define ‖x‖p = (
∑n

i=1 |xi|p)1/p. Then, with 0 < r < s, the following
inequalities are satisfied:

(1) [11, Theorem 16, Page 26] ‖x‖r ≤ n
1
r
−

1
s ‖x‖s.

(2) [11, Theorem 19, Page 28] ‖x‖s ≤ ‖x‖r.

Corollary 19 Let x ∈ R
n and 0 < α < 1. Then,

(1) ‖ ⌈x⌋α ‖ ≤ n
1−α

2 ‖x‖α
(2) xT ⌈x⌋α ≥ ‖x‖α+1

PROOF. For the first item, note that ‖ ⌈x⌋α ‖ 1
α =

(
∑n

i=1 |xi|2α
)

1
2α = ‖x‖2α. Moreover, Proposition 18-(1) with

2α < 2 leads to ‖x‖2α ≤ n
1
2α−

1
2 ‖x‖2 = n

1−α

2α ‖x‖. For the second item note that xT ⌈x⌋α =
∑n

i=1 xi ⌈xi⌋α =
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∑n
i=1 |xi|α+1 = (‖x‖α+1)

α+1
. Moreover, Proposition 18-(2) with α+1 < 2 leads to ‖x‖α+1 ≥ ‖x‖2. Hence, xT ⌈x⌋α =

(‖x‖α+1)
α+1 ≥ ‖x‖α+1.

Proposition 20 Let x ∈ R and A ∈ R
m×n. Then, smin(A)‖x‖ ≤ ‖Ax‖ ≤ smax(A)‖x‖.

PROOF. This proposition is a direct consequence of the Rayleigh inequality [12, Theorem 4.2.2] and the definition
of the singular values of A in [12, Page 151].

B Auxiliary results in algebraic graph theory

An undirected graph G = (V , E) consists of a node set V of n nodes and an edge set E of ℓ edges [9, Page 1]. An edge
from node i to node j is denoted as (i, j), which means that node i can communicate to node j in a bidirectional
way. G is said to be connected if there is a path between any two nodes. A subgraph is a cycle if every node in
it has exactly two neighbors. G is said to be a tree, if it is connected and it has no cycles. A spanning tree is a
subgraph of G if it contains all its nodes and is a tree. If G is connected, there is always a spanning tree [9, Page
4]. Moreover, a tree has exactly ℓ = n − 1 edges [9, Page 53]. Furthermore, we define the union of two undirected
graphs GA = (VA, EA) and GB = (VB, EB) as GAB = (VA ∪ VB, EA ∪ EB).

Definition 21 (Matrices of interest for G) The following matrices are defined for G:

(1) [9, Page 163] The adjacency matrix A ∈ R
n×n of an undirected graph is defined by its components [A]ij which

comply aij = [A]ij , 1 if (i, j) ∈ E and aij , 0 otherwise.
(2) [9, Page 167] An incidence matrix D ∈ R

n×ℓ for G has a column per edge, where all elements of the column
corresponding to edge (i, j) are 0 except for the i-th element which is 1 and the j-th which is −1.

(3) [9, Page 279] The Laplacian matrix of G is defined as Q , DDT ∈ R
n×n.

(4) [9, Page 305] For any connected graph G, the algebraic connectivity c(G) > 0 is defined as the second smallest
eigenvalue of Q.

Proposition 22 (Some algebraic properties of G) Let G be a connected undirected graph, x ∈ R
n be any vector

orthogonal to 1 and N be the dimension of the null space of D (flow space). Then,

(1) [9, Lemma 13.1.1] rank(Q) = n− 1 .
(2) [9, Corollary 13.4.2] xTQx ≥ c(G)xTx.
(3) [9, Page 280] DT

1 = 0.
(4) [9, Theorem 14.2.1] N = ℓ− n+ 1.

Proposition 23 Let GAB = (V , E) be an undirected connected graph with flow space of dimension N > 0. Then,
there exists undirected connected graphs GA,GB over the same nodes V, with flow space of dimension N − 1 whose
union is GAB .

PROOF. Choose any spanning tree Gtree
AB of GAB with ℓtree = n− 1 edges. Then, from Proposition 22-(4), ℓ− ℓtree =

N > 0. Consider first N = 1. Hence, there is exactly one edge which isn’t part of the spanning tree. Moreover, denote
this edge as e = (i, j) where i, j ∈ V . Then, since e is not in the spanning tree, it is in a cycle and i, j have at least
two neighbors each. Therefore, there are at least two ways to reach i and j from other nodes. Consequently there
are at least two different spanning trees GA,GB (with flow space of dimension N − 1 = 0) which contain e. Now, for
N ≥ 2, there exists at least two edges e, e′ which are not in the spanning tree. Let GA and GB be GAB without e and
e′ respectively. These graphs are connected over the same node set V since they contain the same spanning tree of
GAB. Moreover, they have flow space of dimension N − 1 by Proposition 22-(4) since they have one edge less than
GAB.

Proposition 24 Let G be connected. Then any x ∈ R
n can be written as x = α1+Dx̃ with α ∈ R and x̃ ∈ R

ℓ.

PROOF. Let λ1, . . . , λn and v1, . . . , v2 be the eigenvalues and eigenvectors of Q respectively with ‖vi‖ = 1, i =
1, . . . , n. First, from Propositions 22-(1) and 22-(3) we know that Q has λ1 = 0 and that (1/

√
n)1 is its only
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eigenvector. Hence, {(1/√n)1, v2, . . . , vn} is an orthonormal basis of Rn by the spectral Theorem [12, Theorem 2.5.6].
Consequently, any vector x ∈ R

n can be decomposed as a vector in the image of Q and a component parallel to 1,
equivalently x = α1+Qy for α ∈ R and y = R

n. Additionally, let x̃ = DT y obtaining x = α1+DDT y = α1+Dx̃.

C Auxiliary results on exact differentiation

In this section we provide some results that were used in [18] to show the stability of the Levant’s arbitrary order
exact differentiator. In particular, we are interested in the properties of the recursive system

σ̇1(t) = σ2(t)− λ1 ⌈σ1(t) + θ(t)⌋
m−1
m

σ̇µ(t) = σµ+1(t)− λµ ⌈σµ(t)− σ̇µ−1(t)⌋
m−µ

m−(µ−1)

for 1 < µ < m

σ̇m(t) ∈ −λm ⌈σm(t)− σ̇m−1(t)⌋0 + [−L,L]

(C.1)

with σµ ∈ R, 1 ≤ µ ≤ m, and the measurable map θ : R+ → [−θ̄, θ̄] with θ̄ > 0. Two important results regarding the
contraction property of (C.1) are given.

Proposition 25 (Arbitrary boundedness of (C.1)) [18, Lemma 7] Let θ : R+ → [−θ̄, θ̄] satisfy the condition

that
∫ t0+δ

t0
|θ(τ)|dτ < K for some K > 0. Then, for any 0 < Ωµ < Ω′

µ, 0 ≤ µ ≤ m there exists δ > 0 (sufficiently

small) such that any trajectory of (C.1) satisfying |σµ(t0)| ≤ Ωµ will satisfy |σµ(t)| ≤ Ω′

µ, ∀t ∈ [t0, t0 + δ].

Proposition 26 (Contraction property of (C.1)) [18, Lemma 8] For any 0 < ωµ < Ωµ, 1 ≤ µ ≤ m there exists
Ωµ < Ψµ, T > 0, some gains λ1, . . . , λm > 0 (sufficiently big) and θ̄ > 0 (sufficiently small) such that any trajectory
of (C.1) satisfying |σµ(t0)| ≤ Ωµ will satisfy |σµ(t)| ≤ Ψµ, ∀t ∈ [t0, t0 + T ] and |σµ(t)| ≤ ωµ, ∀t ∈ [T,+∞).
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