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Abstract—This paper proposes a differentiator for sampled
signals with bounded noise and bounded second derivative.
It is based on a linear program derived from the available
sample information and requires no further tuning beyond the
noise and derivative bounds. A tight bound on the worst-case
accuracy, i.e., the worst-case differentiation error, is derived,
which is the best among all causal differentiators and is moreover
shown to be obtained after a fixed number of sampling steps.
Comparisons with the accuracy of existing high-gain and sliding-
mode differentiators illustrate the obtained results.

Index Terms—Differentiation; Optimization; Estimation; Ob-
servers

I. INTRODUCTION

ESTIMATING in real-time the derivatives of a signal
affected by noise is a fundamental problem in control

theory and continues to be an active area of research, see,
e.g., the special issue [1], the comparative analysis [2], and the
references therein. Differentiators are often used, for instance,
for state estimation [3], Proportional-Derivative controllers,
fault detection [4], [5], and unknown input observers [6].

Popular existing methods for differentiation include linear
high-gain observers [7], linear algebraic differentiators [8],
[9], and sliding mode differentiators [10], [11]. These differ
in terms of their convergence properties; while high-gain dif-
ferentiators converge exponentially [7], algebraic and sliding-
mode differentiators exhibit convergence in finite or fixed
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time [8], [10], and they converge exactly for different classes
of noise-free signals [9], [11]. With measurement noise, the
accuracy, i.e., the achievable worst-case differentiation error,
is limited for all differentiators. Linear differentiators may be
tuned to minimize the bound on the differentiation error when
the noise amplitude and a bound on the derivative’s Lipschitz
constant are known [7], whereas the tuning of sliding mode
differentiators only requires knowledge about the Lipschitz
constant but not about the noise [10], [12].

In practice, differentiation is typically performed on a
digital computer using sampled signals. Hence, the use of
continuous-time differentiators requires discretization, which
is particularly challenging for sliding-mode differentiators
because an explicit (forward) Euler discretization may lead to
reduced accuracy, numerical chattering, and even instability
[13], [14]. Several techniques for that purpose have therefore
been proposed, cf. [2], [15], [16]. In any case, the inherent per-
formance limitations of continuous-time differentiators cannot
be surpassed in the discrete domain via discretization.

The present paper proposes a differentiator that considers
the information available in the sampled signal in the form of
a linear program. This approach also yields upper and lower
bounds for the derivative, similar to interval observers [17].
Interval observers, however, have seldom been applied to
differentiation, see e.g., [18], and they are limited in terms of
accuracy by their underlying observer.

In contrast to other observers, the present approach is
shown to have the best possible worst-case accuracy among all
causal differentiators. This best possible worst-case accuracy
is shown to be achieved using a fixed number of samples,
thus providing a limit on the computational complexity of
the linear program and guaranteeing convergence in a fixed
time, similarly to algebraic and some sliding-mode differen-
tiators. Moreover, implementing the algorithm only requires
knowledge of the derivative’s Lipschitz constant and the noise
bound but, unlike other differentiators, yields such an estimate
without requiring any further tuning.

Notation: N, N0, R and R≥0 denote the positive and
nonnegative integers, and the reals and nonnegative reals,
respectively. If α ∈ R, then |α| denotes its absolute value. For
x, y ∈ Rn, inequalities and absolute value operate componen-
twise, so that |x| ∈ Rn≥0 denotes the vector with components
|xi|, and x ≤ y the set of inequalities xi ≤ yi, for i = 1, . . . , n.
For a (differentiable) function f : D ⊂ R → R, f (i) denotes
its i-th order derivative. For a ∈ R, the greatest integer not
greater than a is denoted by bac. The symbols 0, I and 1
denote the zero vector or matrix, the identity matrix and a
vector all of whose components are equal to one, respectively.
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II. PROBLEM STATEMENT AND FORMULATION

A. Problem statement

Consider a differentiable function f : R≥0 → R of which we
know that its derivative f(1) is globally Lipschitz continuous
with Lipschitz constant L, i.e.

|f(2)(t)| ≤ L, for almost all t ∈ R≥0. (1)

Suppose that a noisy measurement mk of the value f(kT )
becomes available at each time instant tk = kT , with k ∈ N0,
and that a bound N on the noise is known, so that

mj = fj + ηj , fj := f(jT ), |ηj | ≤ N, (2)

for j = 0, 1, . . . , k.
The problem to be addressed is to design an algorithm that,

at every time instant tk when a new measurement mk becomes
known, gives all available information on the current value

f1k := f(1)(tk), tk := kT, (3)

of the derivative of f. The more specific problem to be solved
is as follows.

Problem 1: Devise an algorithm that, given the constants
L ≥ 0 (bound on 2nd-order derivative), N ≥ 0 (noise bound),
T > 0 (sampling period) and k ∈ N, provides all possible
values of f1k based on knowledge of the bound (1) and the
measurements mj for j = 0, 1, . . . , k.

B. Possible values for the derivative

Let F1
k (mk) denote the set of possible values for f1k =

f(1)(tk) that are consistent with the bound (1) and the mea-
surements

mk := [m0, m1, . . . , mk]T (4)

that satisfy (2). The set F1
k (mk) can be defined as

F1
k (mk) := {f1k ∈ R : ∃f(·) satisfying (1), (2), (3)}.

The set F1
k (mk) is convex and hence, whenever nonempty, it

will have the form of an interval. Problem 1 can thus be posed
as finding the extreme values

F1

k(mk) := supF1
k (mk), F1

k(mk) := inf F1
k (mk). (5)

For future reference, define Xk(f) as the vector

Xk(f) := [f(t0), . . . , f(tk), f(1)(t0), . . . , f(1)(tk)]T . (6)

C. Samples and measurements

Since the derivative f(1) is globally Lipschitz continuous,
then f(2) exists almost everywhere and

f(1)(τ) = f1j −
tj∫
τ

f(2)(s)ds, f(t) = fj −
tj∫
t

f(1)(τ)dτ.

From these expressions one can obtain the bounds

|fj−1 − fj + f1jT | ≤ L
T 2

2
, (7)

|f1j − f1j−1| ≤ LT, (8)

and from (2), also |fj −mj | ≤ N. (9)

At time tk = kT , every function f that satisfies the bound (1)
for almost all t ∈ [0, tk] will have associated values Xk(f)
that must satisfy the constraints (7)–(8) for j = 1, 2, . . . , k.
In addition, given the noise bound N , the corresponding
measurements must satisfy (9) for j = 0, 1, . . . , k.

III. MAIN RESULTS

A. Derivation of the proposed differentiator

Consider a vector xk of 2k + 2 optimization variables

xk := [(f0:k)T , (f10:k)T ]T ∈ R2k+2 (10)

f0:k := [f0, f1, . . . , fk]T , f10:k := [f10 , f
1
1 , . . . , f

1
k ]T ,

where fi and f1i model possible (hypothetical) values for fi
and f1i , respectively. For every m ∈ Rk+1, consider the set

Ck(m) := {x ∈ R2k+2 : |Akx +Mkm| ≤ bk}, (11)

Ak =

 0 Dk

Dk −T [0 I]
I 0

 , Mk =

00
I

 , bk =

 LT1L
T 2

2
1

N1


where Dk ∈ Rk×k+1 is a Toeplitz matrix with first row
and column given by [−1, 1, 0, . . . , 0] and [−1, 0, . . . , 0]T ,
respectively. The set Ck(m) is defined so that whenever a
function f satisfies (1) and produces the measurements mk

satisfying (2), then Xk(f) ∈ Ck(mk). This is so because the
rows of the matrices Ak,Mk and the vector bk are grouped
into 3 blocks, of k, k and k + 1 rows, where the first block
corresponds to (8), the second to (7), and the third to (9).

Remark 1: Although Xk(f) ∈ Ck(mk) holds for all admis-
sible functions f and corresponding measurements mk, given
an arbitrary vector mk ∈ Rk+1 with nonempty Ck(mk) it
may not be true that a function f exists satisfying (1)–(2) with
Xk(f) ∈ Ck(mk) (see the Appendix for a counterexample).
The proposed differentiator provides an estimate f̂1k for the
derivative f1k = f(1)(tk) by solving the optimization problems
(12a)–(12b) and computing (12c):

f
1

k(mk) := max{cTk xk : xk ∈ Ck(mk)}, (12a)

f1
k
(mk) := min{cTk xk : xk ∈ Ck(mk)}, (12b)

f̂1k :=
(
f
1

k(mk) + f1
k
(mk)

)
/2, (12c)

with ck = [0, . . . , 0, 1]T ∈ R2k+2. Note that cTk xk = f1k ,
according to (10). From Remark 1, it follows that the set
of possible values for the derivative of f at time tk, namely
F1
k (mk), satisfies F1

k (mk) ⊆ [f1
k
(mk), f

1

k(mk)] and thus

f1
k
(mk) ≤ F1

k(mk) ≤ F1

k(mk) ≤ f1k(mk). (13)

The set Ck(mk) is defined by linear inequalities in the opti-
mization variables, for every mk. Thus, (12a) and (12b) are
linear programs; the only information required to implement
them are the values L, N , T and the measurements mk,
obtained up to tk. The proposed estimate f̂1k yields the smallest
worst-case distance to any value within [f1

k
(mk), f

1

k(mk)].
The computational complexity of the linear programs in-

creases with increasing k. A fixed number of samples K̂ + 1
can be considered to limit the complexity as summarized in



Algorithm 1, which is meant to be executed at every time
instant. The next section provides a way to choose K̂ by
studying the worst-case accuracy of the differentiator and
showing that a finite K can be computed such that for all
K̂ ≥ K the same worst-case accuracy is obtained.

Algorithm 1: Estimation of f(1)(kT ), based on K̂ + 1
noisy measurements, using linear programming.

input: L, N , T , K̂, mk

Set k := min{k, K̂}
Set mk

k := [mk−k, . . . ,mk−1,mk]T ∈ Rk+1

Set Ak, Mk, and bk as in (11) using L, N , T .
Set ck := [0, . . . , 0, 1]T ∈ R2k+2

Solve f
1

k := max
{
cTk x : |Akx +Mkm

k
k| ≤ bk

}
Solve f1

k
:= min

{
cTk x : |Akx +Mkm

k
k| ≤ bk

}
return: f̂1k :=

(
f
1

k + f1
k

)
/2

B. Differentiator convergence and worst-case accuracy
A measure of the accuracy of the differentiator is given by

the difference between the upper and lower bounds that can
be ensured on the derivative

wk(mk) := f
1

k(mk)− f1
k
(mk). (14)

With the differentiator output f̂1k suggested above, the dif-
ferentiator error is then bounded by wk(mk)/2 ≥ 0 if
Ck(mk) 6= ∅. A related quantity is the difference of actual
worst-case derivative bounds

Wk(mk) := F1

k(mk)−F1
k(mk), (15)

which according to (5) correspond to the best possible accu-
racy obtainable from the measurements mk.

Let Mk(L,N, T ) denote the set of all possible measure-
ments mk that could be obtained for functions satisfying (1)
with additive measurement noise bound N :

Mk(L,N, T ) :=
{
mk ∈ Rk+1 : ∃f(·), (1) and (2) hold

}
.

Consider the obtained and the best possible accuracy over all
possible measurements, i.e., their worst-case values,

w̄k(L,N, T ) := supm∈Mk(L,N,T ) wk(m), (16)

W̄k(L,N, T ) := supm∈Mk(L,N,T )Wk(m). (17)

Clearly, w̄k(L,N, T ) ≥ W̄k(L,N, T ) according to (13).
Also, no causal differentiator can achieve a better worst-case
accuracy than W̄k(L,N, T ) due to (5).

Our main result is the following.
Theorem 1: Given positive L, N , and T , the accuracies

wk(m), w̄k(L,N, T ) obtained with the differentiator (12) and
the best possible accuraciesWk(m), W̄k(L,N, T ), as defined
in (14), (16) and (15), (17), respectively, satisfy:
a) wk(0) = 2h̄k, with

h̄k = ho(k), k = min{k,K}, ho(`) :=
1

2
LT`+

2N

T`
,

K :=

{
Q if Q2 +Q ≥ 4N

LT 2 ,

Q+ 1 otherwise,
Q :=

⌊
2

T

√
N

L

⌋
.

b) wk(0) ≥ wk+1(0) for all k ∈ N;
c) wk(0) =Wk(0);
d) wk(0) = w̄k(L,N, T ) = W̄k(L,N, T ).

Items a) and b) state that the sequence {wk(0)} is non-
increasing and converges to a limit in K samples, and give
an expression for both, the number of samples and the limit
value h̄K . Item c) states that, when all measurements equal
zero, the accuracy obtained is identical to the true, best
possible accuracy among causal differentiators formulated in
Problem 1. Item d) shows that the zero-measurement case is
actually the worst over all possible measurements. This means
that the proposed differentiator’s worst-case accuracy is thus
the best among all causal differentiators. Note that these results
are very powerful because xk ∈ Ck(mk) does not imply
that xk = Xk(f) for some f satisfying (1)–(2), as stated in
Remark 1.

Since the best worst-case accuracy is achieved after a
fixed number of K sampling steps and then stays constant,
considering more (older) measurements does not improve the
worst-case performance. With this insight, Theorem 1 ensures
that Algorithm 1 with K̂ ≥ K provides the best worst-
case accuracy among all causal differentiators. Particularly,
if N < LT 2/4, then K̂ = K = 1 can be chosen; the
linear programs may then be solved explicitly, yielding the
differentiator f̂1k = (mk −mk−1)/T as a special case.

IV. PROOF OF THEOREM 1

The proof strategy for Theorem 1 is to first study the case
corresponding to the noise bound N = 1 and the sampling
period T = 1, and then show how the general case can be
obtained from this.

A. The case N = T = 1

To begin, consider the case (N,T, L) = (1, 1, L̃) with L̃ :=
4/ε2. Using these parameters, the quantities in the statement
of Theorem 1 become

K =

{
bεc if bεc2 + bεc ≥ ε2,
bεc+ 1 otherwise,

āk = h(k), k = min{k,K}, h(`) =
2`

ε2
+

2

`
,

(18)

where we have used ak and h(·) to denote h̄k and ho(·)
corresponding to (N,T, L) = (1, 1, 4/ε2).

The following lemma establishes some properties of the
sequence {ak} that will be required next.

Lemma 1: Consider (18), and let

ak := min
`∈{1,...,k}

h(`).

Then, the following statements are true:
a) h(`) is strictly decreasing for ` ≤ bεc and strictly increas-

ing for ` ≥ bεc+ 1.
b) If k ≤ bεc then ak = h(k).
c) If k ≥ bεc+ 1 then ak = aK .
d) ak = ak for all k ∈ N.

Proof: The derivative of the function h is h(1)(s) = 2
ε2 −

2
s2 , so that h(1)(ε) = 0, h(1)(s) < 0 for s ∈ (0, ε), and



h(1)(s) > 0 for s ∈ (ε,∞). Therefore, h is strictly decreasing
within the interval (0, ε] and strictly increasing within [ε,∞).
Since bεc ≤ ε < bεc+ 1, then item a) is established. Item b)
then follows straightforwardly from the definition of ak.

For item c), note that for k ≥ bεc+ 1 > ε, from item a) we
must have ak = min{h(bεc), h(bεc+ 1)}. Consider

h(bεc)− h(bεc+ 1) =
2

bεc
− 2

bεc+ 1
− 2

ε2

If this difference is nonpositive, which happens if bεc2+bεc ≥
ε2, then h(bεc+ 1) ≥ h(bεc) will hold. Observing (18), then
ak = min{h(bεc), h(bεc+ 1)} = aK .

Finally, d) follows by combining Lemma 1b) and c).
Let Sk := {` ∈ N : 1 ≤ ` ≤ k − k}. Consider a function

f̃ : [0, k]→ R defined as follows

f̃(t) :=
2(t− k)2

ε2
+ ak(t− k) + 1 for t ∈ [k − k, k] (19)

f̃(t) := f̃(1)(`)(t− `)2 + f̃(1)(`)(t− `)− 1 (20)

for t ∈ [`− 1, `) with ` ∈ Sk and where

f̃(1)(`) := lim
t→`+

f̃(1)(t). (21)

It is clear that f̃ satisfies limt→k− f̃(1)(t) = ak. The following
lemma establishes that f̃ is continuously differentiable, its
derivative has a global Lipschitz constant L̃, and satisfies
Xk (̃f) ∈ Ck(0).

Lemma 2: Let f̃ : [0, k]→ R be defined by (19)–(21). Then,
a) f̃ is continuous, f̃(k) = 1, and f̃(`) = −1 for ` ∈ Sk.
b) f̃(1) is continuous in (0, k), and f̃(1)(`− 1) = −f̃(1)(`) for

every ` ∈ Sk.
c) |̃f(1)(k − k)| ≤ 2/ε2 for k > k
d) f̃(`) ∈ [−1, 1] for every ` ∈ N0 with ` ≤ k.
e) |̃f(2)(t)| ≤ L̃ = 4/ε2 for almost every t ∈ [0, k].

Proof: a) The fact that f̃(k) = 1 follows directly from
(19). Also, since ak = h(k), then

f̃(k − k) =
2k2

ε2
+

(
2k

ε2
+

2

k

)
(−k) + 1 = −1.

Note that, by definition, f̃ is continuous in the intervals [`−1, `)
for all ` ∈ Sk and also in [k − k, k]. From (20), for ` ∈ Sk
one has limt→`− f̃(t) = −1 = f̃(`). Thus, f̃(`) = −1 for any
` ∈ Sk and it follows that f̃ is continuous in [0, k].

b) From (20) we obtain:

f̃(1)(t) = 2̃f(1)(`)(t− `) + f̃(1)(`), t ∈ [`− 1, `) (22)

Hence, (22) gives limt→`− f̃(1)(t) = f̃(1)(`) which according to
(21) leads to continuity of f̃(1)(t) for every t ∈ Sk. Continuity
of f̃(1) within (0, k] then follows similarly as in the proof of
item a. Finally, note that evaluating at t = ` − 1 in (22) it
follows that f̃(1)(`− 1) = −f̃(1)(`) for every ` ∈ Sk.

c) From (18), (19) and the definition ak = h(k), it follows
that for k > k = K

f̃(1)(k − k) =
2

K
− 2K

ε2
. (23)

Multiplying f̃(1)(k−k) by Kε2/2 > 0, the inequalities −K ≤
ε2 − K2 ≤ K have to be proven. Consider first the case

K = bεc. Then, K ≤ ε, i.e., ε2 − K2 ≥ 0, and the upper
bound remains to be proven. Since bεc2 + bεc ≥ ε2 holds in
this case, one has

ε2 − bεc2 ≤ ε2 − (ε2 − bεc) = bεc = K.

Consider now the case K = bεc+ 1. Since K > ε, it suffices
to show the lower bound. It is obtained from

ε2 − (bεc+ 1)2 = ε2 − bεc2 − 2bεc − 1 > −bεc − 1 = −K,

because bεc2 + bεc < ε2 holds in this case.
d) For ` ∈ Sk, item d) follows from item a). Otherwise,

for ` ≥ k− k + 1, obtain from the time derivative of (19) for
t ≥ k − k + 1

f̃(1)(t) ≥ f̃(1)(k − k + 1) =
4

ε2
+ f̃(1)(k − k) ≥ 2

ε2
> 0 (24)

for k > k due to item c) and

f̃(1)(t) ≥ f̃(1)(1) = −4(k − 1)

ε2
+ āk = −2k − 4

ε2
+

2

k

≥ −2ε− 2

ε2
+

2

ε+ 1
=

2

ε2(ε+ 1)2
> 0 (25)

for k = k ≤ K ≤ ε + 1. Hence, f̃ is strictly increasing
on [k − k + 1, k] and, since f̃(k) = 1, it suffices to show
f̃(k − k + 1) ≥ −1. To see this, assume the opposite

−1 > f̃(k − k + 1) = −1 +
2

k
+

2

ε2
− 2k

ε2

or equivalently that ε2 + k − k2 < 0. For k ≤ bεc this is
impossible, because then ε ≥ k; hence, k = bεc + 1 = K.
Then, ε2 + bεc + 1 − (bεc + 1)2 < 0 or equivalently ε2 <
bεc2 + bεc which contradicts the fact that K = bεc+ 1.

e) Note that f̃(2)(t) = 4/ε2 for t ∈ (k − k, k). The result
is thus established if k = k. Next, consider k > k = K.
From (20), |̃f(2)(t)| = |2̃f(1)(`)| for t ∈ (`− 1, `) with ` ∈ Sk.
From item b), then |2̃f(1)(`)| = |2̃f(1)(k−k)| for ` ∈ Sk, where
|2̃f(1)(k− k)| ≤ 4/ε2 = L̃ due to item c). Thus, |̃f(2)(t)| ≤ L̃
follows for almost every t ∈ [0, k].

B. The case with arbitrary positive N,T, L

Let f(t) := N f̃(t/T ) for t ∈ [0, kT ] and f̃(t) defined as
in (19) and (20) with ε = 2

T

√
N
L . First, Lemma 2, items a)

and b), is used to conclude that f is continuously differentiable
in (0, kT ). Next, Lemma 2d) is used to conclude that f(`T ) ∈
[−N,N ] for every integer ` ∈ [0, k]. Moreover, Lemma 2e) is
used to conclude that for almost all t ∈ [0, kT ],∣∣∣f(2)(t)∣∣∣ =

N

T 2

∣∣∣̃f(2)(t/T )
∣∣∣ ≤ N

T 2

4

ε2
=

N

T 2

LT 2

N
= L.

Furthermore, using ε = (2/T )
√
N/L in (18) recovers the

definitions in the statement of Theorem 1 directly.
It follows that the function f satisfies (1)–(2) for some

sequence {ηk} and zero measurements, and hence Xk(f) ∈
Ck(0) (recall Remark 1). In addition, f1k = f(1)(kT ) = h̄k =
Nak/T . From (5), (12) and (13), then

f
1

k(0) ≥ F1

k(0) ≥ f1k = h̄k. (26)



Next, h̄k is shown to be also an upper bound for f
1

k(0).
Lemma 3: Let k, k ∈ N satisfy k ≥ k. Consider real

numbers fj , f1j for j = 0, 1, . . . , k satisfying in (11) the in-
equalities corresponding to (7) and (8) for j = k−k+1, . . . , k,
and to (9) for j = k and j = k − k. Let h̄k be defined as in
Theorem 1. Then, f1k ≤ h̄k.

Proof: From (8) we know that f1j−1 ≥ f1j − LT . Using
this relation repeatedly for j = k, k − 1, . . . , k − k + 1,

f1k−i ≥ f1k − iLT for i = 1, . . . , k. (27)

Similarly, from (7), we know that fj−1 ≤ fj − f1j T +T 2L/2.
Using this relation for j = k, k − 1, . . . , k − k + 1 yields

fk−i ≤ fk −
i−1∑
j=0

f1k−jT + iL
T 2

2
, i = 1, . . . , k. (28)

Let i = k and use (27) in (28) to obtain:

fk−k ≤ fk −
k−1∑
j=0

(
f1k − jLT

)
T + kL

T 2

2

≤ fk − kTf1k + LT 2k2/2. (29)

Using −LT 2k2/2 = 2N − kT h̄k from the definition of h̄k,

fk − fk−k ≥ kTf1k −
k2LT 2

2
= 2N + kT (f1k − h̄k). (30)

However, from (9) we know that, fk ≤ N and −fk−k ≤ N .
Thus, fk − fk−k ≤ 2N , which with (30) yields f1k ≤ h̄k.

Combining (26) and Lemma 3 leads to f
1

k(0) = F1

k(0) =
h̄k. From (11), it follows that x ∈ Ck(0) ⇔ −x ∈ Ck(0).
Therefore, it must happen that f1

k
(0) = F1

k(0) = −h̄k.
Finally, recalling (14) and (15), then wk(0) =Wk(0) = 2h̄k.
This establishes Theorem 1a) and c).

To prove item b), note that h̄k in Theorem 1 satisfies
h̄k = (N/T )h(k), with the latter defined as in (18) and ε2 =
4N/LT 2. Therefore, Theorem 1b) follows from Lemma 1.

C. The case with mk 6= 0

The constraint set Ck(mk) has the following simple prop-
erty, which will be instrumental in establishing Theorem 1d).

Lemma 4: Let mk ∈ Rk+1 as in (4) and xk ∈ R2k+2 with
components named as in (10) be such that xk ∈ Ck(mk). Let
m̃k ∈ Rk+1 have components m̃0, m̃1, . . . , m̃k satisfying

m̃j = mj + aj + b, j = 0, 1, . . . , k, (31)

for some a, b ∈ R and define x̃k := [(f̃0:k)T , (f̃10:k)T ]T , with

f̃j := fj + aj + b, f̃1j := f1j + a/T, j = 0, 1, . . . , k.

Then, x̃k ∈ Ck(m̃k).
Proof: Directly from the definitions, it is clear that

f̃j − m̃j = fj −mj , f̃1j − f̃1j−1 = f1j − f1j−1,
f̃j−1 − f̃j + f̃1j T = fj−1 − fj + f1j T.

Therefore, if (7)–(9) are satisfied for xk and mk, they will
also be satisfied for x̃k and m̃k.

Consider mk with nonempty Ck(mk) and let m̃k be defined
as in (31) with a = (mk−k − mk)/k and b = −mk − ak.

Then, m̃k−k = m̃k = 0. By Lemma 4, it follows that
f
1

k(m̃k) = f
1

k(mk) + a/T and f1
k
(m̃k) = f1

k
(mk) + a/T , so

that wk(m̃k) = wk(mk).
Next, apply Lemma 3 to x̃k ∈ Ck(m̃k). This gives

f
1

k(m̃k) ≤ h̄k. By the symmetry of the constraints required
by Lemma 3, also f1

k
(m̃k) ≥ −h̄k. Therefore,

wk(0) = 2h̄k ≥ wk(m̃k) = wk(mk) ≥ Wk(mk)

for every k and mk. Taking the supremum over all mk

yields wk(0) ≥ w̄k(L,N, T ) ≥ W̄k(L,N, T ) ≥ Wk(0).
Theorem 1d) is then established recalling Theorem 1c).

V. COMPARISONS

This section compares the proposed differentiator’s per-
formance and accuracy to a linear high-gain and an exact
sliding-mode differentiator. For comparison purposes, each
of those two differentiators is discretized using state-of-the-
art techniques. The proposed differentiator in Algorithm 1 is
implemented by solving the linear programs using Yalmip [19]
with the Matlab solver linprog.

Before doing the comparison, it is worthwile to note that
Theorem 1 states the proposed differentiator’s worst-case
accuracy 1

2W̄k(L,N, T ) and the maximum time KT it takes
to achieve it. For all values of T , L, and N , this accuracy is
bounded from below by

1

2
W̄k(L,N, T ) ≥ 2

√
NL. (32)

This lower limit is also obtained for certain special combina-
tions of T , L, N , as well as for T → 0. Exact differentiators
have a similar inherent accuracy restriction, see [10], [20].

A. Linear High-Gain Differentiator

In continuous time, a second order linear (high-gain) dif-
ferentiator with identical eigenvalues and time constant τ is
given by

ẏ1 =
2

τ
(m− y1) + y2, ẏ2 =

1

τ2
(m− y1), (33)

with output f̂1 = y2, input m = f + η and |η| ≤ N .
From [7], its optimal asymptotic accuracy is obtained as
4e−

1
2

√
NL ≈ 2.43

√
NL. The corresponding optimal time

constant is τ = e−
1
2

√
N/L, which is hence chosen in the

following. For simulation purposes, the linear system (33) is
discretized using the implicit Euler method.

B. Robust Exact Sliding-Mode Differentiator

As a sliding-mode differentiator, the robust exact differen-
tiator proposed in [10] is used. In continuous time, it is

ẏ1 = k1 |m− y1|
1
2 sign(m− y1) + y2, (34a)

ẏ2 = k2 sign(m− y1), (34b)

with output f̂1 = y2, input m = f + η with |η| ≤ N and
positive parameters k1, k2. It is discretized using the matching
method proposed in [16] and simulated using the toolbox [21].
Parameters are selected as k1 = 2r and k2 = r2, with
robustness factor r as in [21] set to r = 1.5

√
L.
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Fig. 1. Bounded noise η added to the signal f(t) = t2/2 sampled with
T = 10−2, and corresponding differentiation errors for proposed differen-
tiator, linear high-gain differentiator, and sliding-mode differentiator from a
simulation with N = 10−2 and L = 1. For the proposed differentiator, the
error bounds obtained along with the estimate from the linear programs in
Algorithm 1 are also shown.

C. Comparison

For the comparison, the signal f(t) = Lt2/2 and noise

η(t) =

{
max(−N,N − L(t− cb tcc)

2) t− cb tcc < 2
√

N
L

N otherwise

with constant c = 6
√
N/L are sampled with T = 10−2.

Parameters are selected as L = 1, N = 10−2. For these
particular parameters, Theorem 1 yields K = 20 and an
optimal worst-case accuracy ho(K) = 0.2.

Fig. 1 depicts the noise as well as the differentiation error of
all differentiators. For the proposed differentiator, two values
of K̂ are considered and the error bounds, i.e., the values
of (f

1

k − f1
k
)/2, as obtained from the linear program are

shown as well. One can see that, after an initial transient of
duration KT = 0.2, the proposed differentiator achieves the
best worst-case accuracy of ho(K) = 0.2, as expected from
the theoretical results. Moreover, increasing K̂ improves the
error bound obtained along with the estimate. The high-gain
differentiator leads to a larger but smoother error overall. The
robust exact differentiator, finally, exhibits the largest worst-
case errors, because it attempts to differentiate exactly also the
noise, but is the most accurate one for constant noise.

VI. CONCLUSION

A differentiator for sampled signals based on linear pro-
gramming was proposed. It is shown that the best worst-
case accuracy is obtained with a fixed number of discrete-
time measurements, which allows limiting its computational
complexity. Comparisons to a linear high-gain differentiator
and a standard sliding-mode differentiator exhibited a higher
accuracy. However, depending on the sampling time, the
increased accuracy comes at a higher computational cost.

APPENDIX

To show that, as stated in Remark 1, a nonempty constraint
set Ck does not necessarily imply existence of a function f,
consider L = 2, T = 1, N = 0, k = 2 and measurements
m = [0, 0, 4]T . It is easy to check that every x ∈ Ck(m) has
the form x = [0, 0, 4, f10 , 1, 3]T with f10 ∈ [−1, 3]. By sym-
metry with respect to time reversal, any function f satisfying
(1) also has to satisfy |fj − fj+1 + f1jT | ≤ LT

2

2 in addition
to (7). Adding this inequality with j = 1 to the constraints as∣∣f1 − f2 + f11

∣∣ ≤ 1 yields a contradiction. Hence, no function
f satisfying (1) exists for these measurements.
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