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Autonomous Navigation of MAVs in Unknown
Cluttered Environments

Leobardo Campos-Macı́as, Rodrigo Aldana-López, Rafael de la Guardia,
José I. Parra-Vilchis and David Gómez-Gutiérrez

Abstract

This paper presents an autonomous navigation framework for reaching a goal in unknown 3D cluttered
environments. The framework consists of three main components. First, a computationally efficient method for
mapping the environment from the disparity measurements obtained from a depth sensor. Second, a stochastic
method to generate a path to a given goal, taking into account field of view constraints on the space that is
assumed to be safe for navigation. Third, a fast method for the online generation of motion plans, taking into
account the robot’s dynamic constraints, model and environmental uncertainty and disturbances. To highlight the
contribution with respect to the available literature, we provide a qualitative and quantitative comparison with
state of the art methods for reaching a goal and for exploration in unknown environments, showing the superior
performance of our approach. To illustrate the effectiveness of the proposed framework, we present experiments
in multiple indoors and outdoors environments running the algorithm fully on board and in real-time, using a
robotic platform based on the Intel Ready to Fly drone kit, which represents the implementation in the most
frugal platform for navigation in unknown cluttered environments demonstrated to date. Open source code is
available at: https://github.com/IntelLabs/autonomousmavs. The video of the experimental results can be found
at https://youtu.be/Wq0e7vF6nZM

Index Terms

aerial systems: perception and autonomy, autonomous vehicle navigation, collision avoidance, visual based
navigation, navigation in unknown environments

I. INTRODUCTION

Autonomous navigation in unknown cluttered environments is one of the fundamental problems in
robotics with applications in search and rescue, information gathering and inspection of industrial and
civil structures, among others. Multirotor Micro Aerial Vehicles (MAVs) are an ideal robotic platform for
many of these tasks due to their small size and high maneuverability. MAVs have also been demonstrated
to be powerful enough platforms to operate autonomously in GPS-denied environments using only onboard
processing and sensing. In many practical use cases, navigation is goal-oriented, meaning that there is
a premium on reaching a specific target location as directly as possible, for example, while minimizing
time, energy or total distance traveled by the MAV.

Since the environment is unknown, building a map is an important part of the solution as it provides a
world representation to the robot that may include metric, topological and semantic information needed
by the robot to plan trajectories towards its global goal. Continuous advances in computing hardware and
software, availability of powerful sensors, and algorithmic developments [1], enable maps to be processed
fast enough to also be useful for collision avoidance with objects entering the field of view of the robot.
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Fig. 1. Reaching a goal in a forest environment: The top left image shows the map representation generated together with the generated
trajectory. The top right image shows the camera robot footage. The bottom image shows a picture of the robot in the forest performing the
experiment.

As the map is created and new areas are discovered, online planning is required as it helps the robot
identify shortcuts and escape local minima. Such planning algorithms must take into account the dynamical
constraints of the robot to guarantee that the trajectories planned can be executed.

Although mapping, planning, and trajectory generation can be considered mature fields considering
certain combinations of robotic platforms and environments, a framework combining elements from all
these fields for MAV navigation in general environments is still missing. Recent surveys on classical
approaches for mapping can be found in [1], for planning in [2] and for robotic navigation in general in
[3].

A. Contributions
In this paper, we present a framework for MAV navigation in complex, unknown 3D environments. This

framework enables robust autonomous navigation in resource-constrained platforms that, using previous
methods, would not be able to navigate in cluttered unknown environments.

It consists of three main components. First, a computationally efficient method for mapping the envi-
ronment from the disparity measurements obtained from an RGB-D camera. Second, a stochastic method
to generate a path to a goal located on the map, taking into account field of view constraints on the
space that is assumed to be safe for navigation. This method is efficient because it plans only in three-
dimensional space and does not require taking into account high order dynamics of the robot which
are handled in the motion planning method. In addition, in order to detect collisions, the path planning
exploits the structure defined by our map representation for fast collision checking. Third, a lightweight
method for the online generation of motion plans over a three-dimensional path, taking into account the
MAV’s dynamic constraints, model and environmental uncertainty, and disturbances. Contrary to existing
approaches, this method does not require the use of any optimization solver, making it suitable for online
planning, even in platforms with low computing power. In addition, the combination of these three main
components allows our system to reach a global goal without getting stuck in dead ends. To demonstrate
the efficiency of our method, experiments in multiple indoors and outdoors environments, like the ones
shown in Figure 1, were implemented in a MAV platform equipped with a low power microprocessor. It
is important to highlight that existing implementations solving similar problems require high-end general
purpose and graphics processors and significantly higher compute resources.
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B. Related work
The papers [4], [5] are among the earliest works demonstrating fully autonomous MAV navigation. The

authors in [4] presented a system that enables autonomous navigation for multi-floor mapping with all
the processing onboard a MAV including loop closure, localization, planning, and control. However, the
map was constructed using a simplified incremental SLAM algorithm assuming 2.5D environment models
formed by vertical walls and horizontal ground planes. The work in [5] demonstrated the feasibility of
autonomous mapping and exploration for a quadrotor MAV with a forward-looking stereo camera as
its main sensor. The MAV was capable of path planning and exploration, moving autonomously from
one point to another with collision avoidance. However, global planning was done using frontier-based
exploration applied on a 2D slice of the current occupancy grid map.

More recent papers have continued the strategy of using refinements on the frontiers-based algorithm [6]
for global exploration, combined with some variation of the next best view algorithm [7] for local planning.
The paper [8] proposes an exploration algorithm that is designed to fly at high velocities as much as
possible. Instead of planning trajectories, a reactive mode generates instantaneous velocity commands
based on currently observed frontiers. The desired velocity at a frontier is proportional to its distance
from the MAV so that for a frontier at the detection range the velocity will be maximum and pointing
towards the unknown volume. Unfortunately, the method does not guarantee alignment between the field
of view of the camera and the direction of motion, which may hinder obstacle avoidance. In case that no
frontiers are observed in the field of view their method falls back to classical frontier-based exploration
using a regular 3D voxel grid representation of the environment. In contrast, in our framework we use a
more efficient environment representation based on a linear octree.

The contribution in [9] aims to provide accurate mapping simultaneously with the exploration of
unknown environments. Their method combines paths sampled from two random trees, where the first tree
selects viewpoints to visit next based on the number of unexplored voxels and the second tree is used to
find a path to the selected viewpoint that minimizes the robot’s pose and landmarks uncertainty. Paths are
only planned inside free space such that they are collision free and can be tracked by the vehicle, given
possible motion constraints. However, to guarantee that the paths are collision free they use expensive
simulation/optimization-based methods.

In [10], receding horizon Next-Best-View (NBV) planning and frontier exploration are combined for
local and global exploration, respectively. The potential information gain for every yaw angle is estimated
using sparse raycasting to select the next direction to explore in NBV. Nevertheless, this method does
not have a goal oriented objective. The work in [11] describes a system for mapping and planning
based on incrementally built signed distance fields in dynamically growing maps. An intermediate goal-
finding algorithm complements a conservative local planner which treats unknown space as occupied and
inaccessible. The method uses an incrementally-built, dynamically-growing Truncated Signed Distance
Field (TSDF) map representation to compute collision costs and gradients. The next intermediate goal for
navigation is selected from a set of candidate points sampled from the unoccupied space of the TSDF
around the robot by solving an optimization problem to maximize a reward combining an exploration
gain and the distance to the global goal. Compared to our proposed method, computing signed distance
fields and the need to solve optimization problems online makes their approach computationally more
expensive.

The papers [12] and [13] focused on navigation at high speeds to a goal in fully unknown and cluttered
3D environments. In [12] the authors used a local planner to find a path to a target on a global guiding
path. The local map is built from depth images using GPU-accelerated TSDF fusion. The perception-action
loop is closed using a standard multirotor controller to execute the trajectory generated by a nonlinear
optimization solver, which is initialized with the path computed by the local planner. The overall method
is compute intensive, requiring both a high-end CPU and a GPU. They report flying in a sparsely cluttered
environment at up to 2.2 m/s but with an average whole system delay of 230 ms navigation at such high
velocities would not be safe in general unknown environments. In [13] the authors used a local robot-
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centric map and a local planner to generate the robot trajectory. To escape dead ends and obtain globally
consistent local actions an A* planner is provided with a hybrid map formed by combining a local 3D
map with a 2D global map. The piecewise linear path from the planner guides the convex decomposition
of the local map to find a safe corridor in free space formed as linear equality constraints in a quadratic
program (QP) for collision checking. The QP also takes into account dynamic constraints and a modified
cost functional such that the generated trajectories are close to the center of the safe corridor. According
to the authors, one of the limiting factors for reaching high speeds in their real-world experiments was
the size of the map for planning. The other key factor was the sparsity of the map which in their case was
determined by the use of a nodding 2D lidar which could reliably run at only around 1.5 Hz. In contrast,
our complete system runs at 30 Hz with an average delay of around 3.4 ms.

Among the recent methods focusing on navigation in cluttered environments, not necessarily on explo-
ration, are the works of [14]–[16]. The paper [14] proposes a robocentric, fixed-size three-dimensional
circular buffer to maintain local information about the environment, trading off the ability to arbitrarily
large occupancy maps for faster lookup and measurement insertion operations. Points are inserted into the
occupancy buffer by using raycast operations and voxels are updated by using the hit and miss probabilities
similar to Octomap. The replanning problem is represented as an optimization of an endpoint cost that
penalizes position and velocity deviations at the end of the trajectory, a collision cost function, the cost
of the integral over the squared derivatives (acceleration, jerk, snap) and a soft limit on the norm of time
derivatives (velocity, acceleration, jerk and snap) over the trajectory. However, this method may get stuck
in local minima and the optimization does not take into account the yaw dynamics. The authors in [15]
consider the navigation problem in unknown cluttered environments by a MAV equipped with a monocular
fish-eye camera. A time-indexed path is generated by fast marching on a velocity field induced from an
Euclidead Signed Distance Field (ESDF). The nodes from the path are then used for building a flight
corridor in a voxel grid. Trajectory generation is done by posing a constrained quadratic optimization
problem and solving it for the coefficients of a Bernstein polynomial which minimize the jerk along the
trajectory for each of the three spatial dimensions. The constraints ensure the smoothness, safety as well
as the dynamical feasibility of the trajectory. However this method is computationally expensive and does
not guarantee that a feasible solution will be found. The work in [16] propose uncertainty-aware proximity
queries for planning without any prior discretization of the data in a world frame. The method works by
reverse searching over time through sensor measurement views until finding a satisfactory view of a subset
of space. The pose uncertainty associated with depth sensor measurements is incorporated into planning
by treating each pose with frame-specific uncertainty relative to the current body frame. Nonetheless, this
method may get stucked in dead ends.

II. PROBLEM STATEMENT AND OVERVIEW OF THE SOLUTION

In this work, we address the problem of autonomous navigation of a holonomic robot in a 3D space,
from an initial pose to a desired feasible pose in a cluttered unknown environment. It is considered that
the robot has an odometry module to measure position and orientation with respect to the robot’s initial
pose. Existing visual inertial odometry techniques, such as [17] [18], are adequate for navigation as drift
can be expected to be low at least within the local planning area around the robot. In addition, we assume
that the robot is equipped with at least one 3D sensor, for instance RGB-D or stereo cameras with finite
resolution and known horizontal and vertical field of view.

A. Notation
The following notation is introduced to define the different regions used along the paper. These regions

are illustrated in Figure 2.
Let BR(p) be a ball in R3 of radius R = Rr +Ep centered at a point p, where Rr is the radius of the

smallest ball containing the robot and Ep is a safety distance. Continuous-time is represented by t while k
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Fig. 2. Illustration of the different regions used along the paper.

represents discrete-time. The frame rate of the 3D sensor is denoted as fcam, and the field of view at the k-
th frame, which is assumed to be a frustum, is denoted by F [k]. The configuration space is a bounded 3D
cubic volume V ⊂R3. The obstacle region is denoted by Vocc ⊂ V which characterizes the environment.
Portions of Vocc that are sensed to be occupied are added to the volume V ∗occ[k], when a portion of V ∗occ[k]
is sensed to be free it is removed from V ∗occ[k]. Thus, V ∗occ represents the volume that is assumed to be
occupied. Let V ∗cst[k] be the volume swept by all the rays originating at the sensor and terminating either
at a detected point or at the border of the F [k]. V ∗free[k] = {p ∈ V ∗cst[k] : BR(p)∩V ∗occ[k] = /0}, represents
the volume inside the field of view that is free. The volume that is assumed to be traversable is denoted
by Vnav[k] = {p ∈ V : BR(p)∩V ∗occ[k] = /0}. Moreover, let Vsafe[k] = {p ∈ V ∗cst[k] : BRr(p)∩V ∗occ = /0} be
a volume in V ∗cst[k] containing all points with a distance greater than Rr to any obstacle. Note that as
long as the robot remains inside Vsafe[k] it is collision free. Our path planning is constrained to sampling
points inside Vnav[k], since the trajectory generation considers a maximum deviation of Ep as explained
in Section III-B.

A voxel v represents the space contained in a cubic volume, obtained by recursively dividing V into
eight equally sized volumes. The smallest voxel edge length is r.

The position, linear velocity, linear acceleration, linear jerk and linear snap are denoted by p,v,a, j,ζ ∈
R3, respectively. The yaw orientation and its derivatives, angular velocity, angular acceleration, are denoted
by ψ,ω,α ∈ R, respectively.

A trajectory is defined as the vector [p(t)T , ψ(t)]T containing a time-dependant sequence of positions
and yaw orientations, where [·]T is the transpose operator. The augmented state for the trajectory is defined
as z(t) = [p(t)T ,ψ(t),v(t)T ,ω(t),a(t)T , j(t)T ]T . The set of feasible states is defined as

Zsafe[k] =

z :
p ∈ Vsafe[k],
‖v‖∞ ≤Vmax, ‖a‖∞ ≤ Amax,
‖ j‖∞ ≤ Jmax, |ω| ≤Ωmax,

 . (1)

B. Problem Definition
Problem 1: Consider an holonomic robot modeled as a ball BR(p(t)) with dynamics described by

ṗ(t) = v(t), v̇(t) = a(t), ȧ(t) = j(t), j̇(t) = ζ (t), ψ̇(t) = ω(t) and ω̇(t) = α(t). Given an initial and final
positions pi, p f /∈ {p ∈ V : BR(p)∩Vocc = /0}, and initial and final yaws ψi,ψ f , respectively, navigate
from z(ti) = [pT

i ,ψi,0, · · · ,0]T to z(t f ) = [pT
f ,ψ f ,0, · · · ,0]T such that z(t) ∈Zsafe[k], ∀t ∈ [ti, t f ] and k =

b(t − ti) fcamc, with some finite-time t f .
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Fig. 3. Illustration of the framework proposed to solve Problem 1.

III. REACHING A GOAL IN AN UNKNOWN ENVIRONMENT

The outline of the solution proposed to solve Problem 1 is shown in Figure 3. Since the robot is
navigating in an unknown environment, we propose a framework divided in three main elements: Map
representation, Path planning and Trajectory generation.

First, at the map representation stage, a point cloud is computed taking as an input a disparity image
and the odometry of the robot and added to a map representation of the occupied space V ∗occ[k]. Note
that at any time k the contents of the map inside F [k] may change. This may be due to measurement
errors at the current frame or sensor drift errors accumulated over time. When a voxel previously marked
as occupied is observed to be free, the V ∗occ[k] is updated. Second, at the path planning stage, the next
exploration action is generated by creating a path inside Vnav[k], using a variation of the RRT connect,
where one tree is expanded using the current position as root and sampling only inside V ∗free[k], and it
is connected with the other tree expanded from the goal used as root, which samples in Vnav[k]. In this
way, the next position is always contained in V ∗free[k]. Finally with the next planned action obtained, a
trajectory is generated in such a way that drives the robot from its current state to the next planned action
taking into account the robot’s dynamical constraints. The yaw is controlled in such a way that the robot
always moves inside F [k].

A. Map Representation
Recent work has advocated the use of spatial hash tables to represent the environment. Hash tables

provide a sparse representation that can be dynamically expanded with constant time insertion and look
up. Following a spatial hashing approach similar to [19], [20] showed that voxel hashing can be used
advantageously for robotic exploration and mapping. As an alternative to voxel hashing, hierarchical data
structures, such as octrees, sacrifice raw speed for single queries but their additional structure can be
advantageous for planning, as shown for example in [21].

In this work, a linear octree is used to represent the map of the environment. Linear octrees trade-off
reduced memory usage for speed by storing only leaf nodes instead of all tree nodes as is the case for
regular octrees, while preserving the hierarchical structure [22].

The map creation is illustrated in Fig. 4. The Map is implemented as a linear octree with L levels
and with axes-aligned bounding boxes. When a new disparity image is received, a point cloud is created
by reprojecting occupied pixels to 3D-space in the world coordinate system (block Get point cloud in
Figure 4). For each point, a key is generated formed by a level code indicating the depth l in the octree
(i.e. key.level= l) and a spatial code computed by

key.spatial(x,y,z, l) = cat{x̄, ȳ, z̄} (2)

where
x̄ =

⌊
x

2L−lr

⌋
, ȳ =

⌊
y

2L−lr

⌋
, z̄ =

⌊
z

2L−lr

⌋
,
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Fig. 4. Flow diagram of the mapping algorithm.
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(b)
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p f
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pb

p f

(d)

Fig. 5. Illustration of the motion planning method for reaching a goal in an unknown environment: (a) Unknown environment and goal.
(b) Initial proposed path using the current map. (c) Replanned path after updating the map. (d) Final path towards the goal.

cat{·, ·, ·} concatenates its arguments represented in m digits and b·c represents the floor operation. To
find the key corresponding to the current location of the point in the map, equation (2) is used to generate
different keys from the root level l = 0 up to l = L until the key is found in Map (block find point in

Map in Figure 4). As is common in octrees, Map insertion is logarithmic in the size of the map, which can
be dynamically expanded as needed at practically no cost. For each level l, if the obtained key does not
correspond to one in l, the key is removed from Map and the space represented by this voxel is subdivided
into eight equal volume subspaces and their centers are used to generate new keys that are added to the
Map (block Add children in Map in Figure 4). Then, key.level is incremented. This process (block
Update tree in Figure 4) is repeated until key.level is equal to L− 1. Finally, when key.level is
equal to L the occupancy probability of the corresponding voxel is increased using the stereo error model
from [23] (block Update probability in Figure 4). This model has been found to provide an effective
method to account for measurement errors, in particular temporally and spatially correlated errors which
occur in stereo vision systems. When the voxel probability is larger than a certain threshold Pocc, it is
considered as part of V ∗occ[k].

After processing all points in the point cloud, the grouped raycasting method, suggested by [24],
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is applied to all voxels in V ∗occ[k]∩F [k] with occupancy probability larger than a threshold Pray, with
Pray > Pocc (block Grouped raycasting in Figure 4). This step consists on updating the occupancy
probability of the voxels in V ∗cst[k] by decreasing their occupancy probability according to the stereo error
model [23].

Even though a flat grid representation of the map, i.e. only saving observed voxels at maximum
discretization, would be faster for map creation, our linear octree implementation presents a significant
advantage for collision checking between points during path planning. Notice that the linear octree is
similar to a sparse grid representation with an additional block Update tree (see Figure 4). Also notice
that all points inserted into the map must be inside F [k] and that typically there will be some overlap
between F [k] and F [k+1] as the robot needs to update it’s map frequently during navigation. Therefore,
since the method Update tree is only applied to points in F [k + 1] \F [k] the worst case in terms
of computation cost would be expected to happen only at the start when the first frame is processed.
Nonetheless, in the worst case, that is, when 100% of the points in F [k] are added to the map, the
penalty in computation time to implement our linear octree has been found experimentally to be only a
small fraction of complete perception pipeline.

B. Motion Planning
In our approach, the robot always has to move in its field of view, i.e., inside V ∗free[k], to ensure collision-

free navigation. Te proposed motion planning algorithm is described in the flow diagram of Figure 6 and
illustrated in Figure 5.

At the beginning, the robot has a starting position pi, a goal position p f , a current position pc = pi and
has no information about the map as illustrated in Figure 5a. When a new disparity image from the depth
sensor arrives, it is converted to a point cloud and serves as an input to the map representation described
in Section III-A. The map representation, the current position pc and the goal position p f serve as the
input to the path planning algorithm which is solved using a variation of the RRT-Connect [25] algorithm
(block Solve RRT-Connect in Figure 6). The solution of this problem generates a sequence of positions
that connects through Vnav[k] the current position pc and the goal p f , as illustrated in Figure 5b.

The output of the RRT-Connect consists in a sequence of waypoints {pc, p2, p3, . . . , p f } in Vnav[k]. Let

W [k] = {[pT
c ,ψc], [pT

2 ,ψ2], [pT
3 ,ψ3], . . . , [pT

f ,ψ f ]}.

be a path in R4 from the robot’s current position and orientation [pT
c ,ψc] to the given goal configuration

[pT
f ,ψ f ], in such a way that all positions are elements of the RRT-Connect solution and each ψi corresponds

to the angle from the x-axis to the vector pi+1− pi. Choosing ψi in this way ensures that at each waypoint
the field of view of the robot is aligned with the direction of the next waypoint. Hence, the robot always
navigates in V ∗free[k].

To execute the path, the subset W̃ [k] of m waypoints in W [k] together with the point [pb,ψm] where
pb is the intersection between the boundary of V ∗free[k] and line segment connecting pm and pm+1 (block
Get sub-path in V ∗free[k] in Figure 6) is pushed to the trajectory planning algorithm which is explained
in detail in Section III-C (block Send W̃ [k] to trajectory planning in Figure 6). Since pm+1 is not in
V ∗free[k], the point pb is added at the boundary of V ∗free[k], in this way W̃ [k] contains only points in V ∗free[k].
Afterwards, pc is updated as pb.

Whenever the map is updated, if the line segments connecting consecutive points in W [k] are not
V ∗occ[k] (decision is path in V ∗occ[k] ? in Figure 6), then W̃ [k] is pushed to the trajectory planning and pc
is updated as before. Otherwise, a replanning is needed. Hence, a new RRT-Connect solution is obtained
from pc to p f as shown in Figure 5c (block Solve RRT-Connect in Figure 6). This process continues,
exploring new regions as illustrated in Figure 5d, until the goal is reached.
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Fig. 6. Flow diagram of the motion planning algorithm

1) RRT-Connect: An RRT-Connect algorithm is used to generate a sequence of points inside Vnav[k]
connecting the initial and final positions. It receives as input the field of view F [k] of the robot, the
initial and final positions and Vnav[k] defined by the map representation and uses two separate trees, Tc
and Tf initialized at the current position pc and final position p f , respectively. Both trees are extended
simultaneously as an RRT* [26], i.e. a random point is obtained from V and rejected if it is not in Vnav[k],
otherwise an attempt is made to connect it with the tree while minimizing a cost function. In this work,
we use the Euclidean distance as cost function.

Having a tree sampling inside F [k] ensures that the navigation is always inside F [k]. To see why this
is of paramount importance consider a situation where the goal position is above the starting position
with an obstacle in-between; the robot is a quadcopter with a front-facing camera. For this scenario, a
naive approach, based on a single RRT*, would create a path in a straight line from the starting position
to the goal, leading toward the obstacle above the robot, but since the trajectory for the pitch is a function
of the x, y, z, and ψ trajectories, then the robot will not discover the obstacle before a collision. In our
approach, the robot wouldn’t be allowed to fly directly towards the goal. Instead it would have been forced
to navigate inside F [k], discovering the obstacle in the process.

The Tc tree has the peculiarity that the sampling region to generate random points is confined to V ∗free[k].
Nodes in Tc are ordered by distance to the robot, such that farthest nodes are checked first when trying
to connect Tf with Tc. This critical feature forces the robot to always move in its field of view even in a
previously explored area, which is essential due to uncertainty introduced by the sensors.

Figure 5b illustrates both trees, Tf with blue lines and nodes, and Tc with green lines and nodes lying
in F [k], which is represented by the purple polygon. Finally the solution is shown with red lines.

2) Collision test during planning: Besides point cloud processing, collision detection during planning is
the bottle neck in our framework. The basic operation of RRT-Connect algorithm is the random sampling
of the map space in search of new points that can be joined to an existing node in the search tree via
a straight line, without intersecting occupied voxels in the map. Our algorithm for collision detection
takes advantage of the octree structure for efficiency and it is presented in Algorithm 1. It receives the
line to be collision tested and the key of a voxel containing both ends of the line. This algorithm tests
recursively for collisions in all levels starting from key.level up to L.

Fig. 7 presents a benchmark comparison between Algorithm 1, which exploits our map representation,
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Algorithm 1: detectCollision(key,line)
1 if key.level == L then
2 v← getVoxel(key)
3 if line intersects with v and v * Vnav[k] then
4 return true
5 else
6 return false
7 end
8 else
9 children←getChildren(key)

10 for each child in children do
11 if detectCollision(child,line) then
12 return true
13 end
14 end
15 return false
16 end
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Fig. 7. Benchmark of collision detection using Algorithm 1 against a discretization-based collision detection

and the naive way of collision checking on the same map by testing every voxel between the two points
defining a line. Fig. 7 shows the average computing time for 10000 lines with lengths between 5 to 400
voxels in the same random forest environment described in Section V. In contrast with the naive method,
which has a computation time that grows close to linearly with the size of the line, the computation time
remains nearly flat with our map representation and Algorithm 1 as it mainly depends on the depth l of
the linear octree. Note that the expected length between two random points in this map is 165 voxels.

C. Trajectory Generation
The solution of the path planning algorithm is used for the generation of dynamically feasible trajec-

tories. The proposed trajectory generation algorithm is described in this section. Given that the model of
the UAV is differentially flat, the dynamics for each component of the position and yaw are considered
to be decoupled fourth and second order integrator chains, respectively [27].

The given path is specified in terms of the sets of waypoints W̃ [k] that the path planning has generated
and pushed to a stack HK = {h1, . . . ,hK} where hi ∈R4 consist of the i-th position and orientation point, as
illustrated in Figure 6. In this section, we propose an algorithm to traverse the path while navigating in the
region Zsafe[k] given in (1). The trajectory generation guarantees that the dynamic constraints are satisfied
while allowing an a priori defined maximum separation Ep from the path (notice that the regions definition
given in Figure 2 takes into account Ep) and a maximum deviation Eψ from the desired orientation ψi
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W̃ [k]

p(t)

r

Ep

V ∗free[k]
Vsafe[k]

V ∗cst[k]

Fig. 8. Illustration of trajectory generation allowing a deviation of Ep from the path

at any waypoint in the trajectory. The latter constraint ensures that during navigation the next waypoint
is always inside the field of view of the robot from the last waypoint reached. The former constraint
guarantees that the position p(t) remains inside Vsafe[k], as illustrated in Fig. 8, where k = b(t − ti) fcamc.

Our method consists of two components. The first one is a virtual control (for the snap of each of the
spatial coordinates and the yaw’s angular acceleration) that induces an asymptotically stable equilibrium
point z∗ = [ηT ,0, . . . ,0]T ∈R14 which has an associated basin of attraction around z∗. In particular, given
the requirement of maintaining the trajectory z(t) inside Zsafe[k], we can find the set E (t) ⊂Zsafe[k] of
points around z∗ satisfying this requirement, such that the trajectory z(t) passing through z0 ∈ E (t) at
t = t0 cannot leave E (t) for t ≥ t0. Moreover, the possible values for the equilibrium points are restricted
to lie in the line segments connecting consecutive waypoints in HK . Thus, η is parametrized by s where
s ∈ R and η(S) is the end of the path.

The second component of the trajectory generation provides a dynamic for s(t) to evolve η(s(t)) (thus
moving the equilibrium point z∗) along the path defined by HK , such that ṡ(t)> 0 (thus, moving forward
along the path) as long as the trajectory z(t) is in the interior of E (t), and ṡ(t) goes to zero as z(t)
approaches the boundary of E (t). Assuming that at the beginning, z(0) = [η(s(0))T ,0, . . . ,0] ∈ E (t) then,
s(t) is a monotonically increasing function and evolves guaranteeing that z(t) ∈ E (t)⊂Zsafe[k], ∀t ≥ 0.

Theorem 2: Let ṗ(t) = v(t), v̇(t) = a(t), ȧ(t) = j(t), j̇(t) = ζ (t), ψ̇(t) = ω(t), ω̇(t) = α(t) be the
dynamics of the center point of a robot. Let η(s(t)) = [ηx(s(t)),ηy(s(t)),ηz(s(t)),ηψ(s(t))]T represent the
parametrization of the line segments connecting consecutive points in HK and let z∗(t)= [η(s(t)),0, . . . ,0]T .
Therefore, if z(0) = z∗(0) then for the given Ep and Eψ , by using

ζ (t) =k1(p− [ηx(s(t)),ηy(s(t)),ηz(s(t))]T )
+ k2v(t)+ k3a(t)+ k4 j(t)

α(t) =k5(ψ(t)−ηψ(s(t)))+ k6ω(t)

ṡ(t) =max{ρ− (z(t)− z∗(t))T P(z(t)− z∗(t)),0}

where z(t) = [p(t)T ,ψ(t),v(t)T ,ω(t),a(t)T , j(t)T ]T ; A is such that with the above definition of ζ and
α , ż = Az

∣∣
η(s)=0 holds; P satisfies PA + AT P = −I; and ρ > 0 is chosen such that the hyper-ellipse

E (t) = {z : (z− z∗(t))T P(z− z∗(t))≤ ρ} lies inside the set

Zη(t) = {z :|ψ(t)−ηψ(s(t))| ≤ Eψ ,

‖p(t)− [ηx(s(t)),ηy(s(t)),ηz(s(t))]T‖∞ ≤ Ep,

‖v(t)‖∞ ≤Vmax, ‖a(t)‖∞ ≤ Amax,

‖ j(t)‖∞ ≤ Jmax, |ω(t)| ≤Ωmax},
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Oleynikova
et. al. [20]

Gao
et. al. [15]

Florence
et. al. [16]

Usenko
et. al. [14]

Mohta
et al. [13]

Lin
et al. [12] Ours

Navigation
Objectives Goal Goal Goal Goal Goal Goal Goal

Navigation
in FoV Yes No Yes No No No Yes

Feasible
Yaw

Dynamics
No No Yes No No No Yes

Feasible
Positional
Dynamics

Yes Yes Yes Yes Yes No Yes

Map Type Voxel Hashing
TSDF & ESDF

Regular ESDF
Grid Map

Search over
views

Egocentric
Grid

3D local map and
2D global map TSDF Linear Octree

Escaping
Pockets Yes Yes No No Yes Yes Yes

Hardware
Characteristics

2.4 GHz
i7 dual-core

3.00 GHz i7
Nvidia TX1 i7 dual-core 2.1 GHz

i7 dual-core
3.40 GHz

Intel i7-5557U
Intel i7-5500U

Nvidia TX1
1.6 GHz

Atom x7-Z8750
Operation
Frequency 4Hz 10Hz 200-250Hz N/A 3Hz 4 Hz 33Hz

Code
Available Not Complete Yes Not Complete Yes No No Will be made

available

TABLE I
QUALITATIVE COMPARISON OF STATE-OF-THE-ART METHODS FOR NAVIGATION IN UNKNOWN ENVIRONMENTS. CONTINUES ON

TABLE II

z(t) is maintained inside Zη(t)⊂Zsafe[k] for all t ≥ 0 and asymptotically reaches [η(S),0, . . . ,0]T .
Proof: Notice that z(0)∈ E (0), moreover while z(t)∈ E (t), ṡ≥ 0 and η(s) progresses along the path.

Let e(t) = z(t)− z∗(t) with ė = Ae− ż∗. Consider the Lyapunov function candidate V = eT Pe. Therefore,
V̇ = eT (PA+AT P)e+2eT Pż∗ =−eT e+2eT Pż∗ and the value of V decreases for 2eT Pż∗(t)≤ 0.

Suppose that, due to the evolution of s(t) and as a consequence the evolution of z∗(t), z(t) evolves from
z(t1)∈ E (t1) to z(t2) in the boundary of E (t2), i.e. where e(t2)T Pe(t2) = ρ , with e(t)T Pe(t)≤ ρ,∀t ∈ [t1, t2].
This implies that, as z(t) approaches the boundary of E the velocity of s(t) decreases, until ṡ(t2) = 0.
Thus, 2eT (t2)Pż∗(t2) = 2eT (t2)P

[
d
dsη(s)

∣∣
s=s(t2)

,0, . . . ,0
]

ṡ(t2) = 0. Hence, V is decreasing at t = t2 and z(t)
will move toward the interior of E (t) where ṡ(t) > 0. Thus, η(s) progresses along the path. Therefore,
the condition V < ρ will remain. If eventually, for a time t3, eT (t3)PeT (t3) = ρ , then the process is
repeated and η(s(t)) progresses along the path satisfying z(t) ∈ E (t). Eventually, s will be such that
η(s(t)) is at the end of the path and remains there i.e. η(s(t)) remain constant, under this scenario
V̇ = eT (PA+AT P)e = −eT e < 0 for all z 6= [η(S),0, . . . ,0]T . Thus, z(t) will approach [η(S),0, . . . ,0]T

asymptotically.
This method is similar to contouring control [28] in that the path is traversed by continuously making

a trade-off between separation from the path and velocity. However, unlike existing contouring methods,
our approach doesn’t require solving an optimization problem online. It is also similar to LQR-Trees [29]
in that Lyapunov analysis is used to induce “funnels” along the path. However, our method is significantly
simpler since LQR-Trees are computationally equivalent to Kinodynamic planning in R14. Our method
on the other hand exploits the fast exploration of RRTs in R3 to find an obstacle-free path online. This is
coupled with an offline stage of LQR virtual control design and Lyapunov analysis to compute the basin
of attraction. Thus, given a path, to generate a dynamically feasible trajectory, in the online stage, we
only require to evolve the chain of integrators of position and yaw together with evolving s(t), to move
the equilibrium point, progressing along the path.
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Cieslewski
et. al [30]

Papachristos
et. al. [9]

Selin
et. al. [10]

Navigation
Objectives Exploration Exploration Exploration

Navigation
in FoV Yes No No

Feasible
Yaw

Dynamics
No Yes No

Feasible
Positional
Dynamics

No No No

Map Type Octomap Octomap Octomap
Escaping
Pockets Yes No Yes

Hardware
Characteristics N/A 3.4 GHz

i7 dual-core N/A

Operation
Frequency N/A N/A N/A

Code
Available No Yes Yes

TABLE II
CONTINUATION OF TABLE I: QUALITATIVE COMPARISON OF STATE-OF-THE-ART METHODS FOR NAVIGATION IN UNKNOWN

ENVIRONMENTS

IV. DISCUSSION

In this section, we present a qualitative comparison, summarized in Table I and Table II, with the
state of the art methods. In particular, we focus this discussion in the contributions reported in [8]–[10],
[12]–[16], [20], as in our opinion, they represent the closest approaches. These contributions can be
divided into two problems, reaching a goal in an unknown environment [12]–[16], [20] summarized in
Table I and exploration of an unknown environment [8]–[10], summarized in Table II. The former is the
problem addressed in this paper, but since exploration require similar components contributions to both
problems are discussed. In fact, the work of [20] is an extension to their previous exploration framework
by introducing a soft cost for reaching a goal.

Once a goal has been determined, a critical aspect for collision-free navigation in unknown environments
is imposing constraints on the motion plan to navigate within the current field of view, where the robot
has the highest confidence on the traversable space. Our method incorporates this idea which has also
been used by [8], [16], [20]. The work of [15] assumes that the sensors onboard the robot cover an entire
spherical region centered at the robot, which is hard to achieve in practice.

Another important aspect related to navigation in the field of view is ensuring that the camera axis,
and hence the yaw orientation is aligned with the direction of motion. The work in [8], [20] attempts to
accomplish this restriction by implementing a velocity tracking yaw approach but they don’t guarantee
that the generated yaw trajectories will meet angular dynamical constraints.

Additionally, positional dynamical constraints of the robot must be handled explicitly to guarantee that it
will remain in safe regions. In particular, the work in [8], [10], [12] does not handle dynamical constraints
explicitly. Moreover, [14] solve an optimization problem with soft limits on the time derivatives of the
position over the trajectory. Finally, [9], [13], [15], [16], [20] solve a constrained optimization problem to
handle positional dynamical constraints. However, solving optimization problems online is computationally
expensive, even in the convex case. In our approach, the dynamical constraints are incorporated without
the need of an optimization-based solution.

The ability to escape “pockets” or getting out of dead ends is fundamental to complete the navigation
task in general cluttered environments. Beyond local collision avoidance, this requires maintaining and
keeping an up to date map of the explored areas together with a strategy for handling unexplored regions.
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Fig. 9. Qualtative comparision against Gao et. al. [15] and Usenko et. al. [14]. On the left. Top view of the simulated forest environment,
together with the traversed paths. Cyan-Usenko et. al. [14]; Green-Gao et. al. [15] and Red-Ours. On the right. Boxplot, on a logarithmic
scale, of the computed time of each algorithm for map generation and motion generation.

Based on this map the robot should be able to generate a motion plan from the current position to the
goal. Of the methods reviewed, [9] is purely local while [14] uses an egocentric grid of fixed size to create
a local map representation around the robot. [13], [16] use global planning based on A* on a 2D map to
guide local exploration. Compared to our solution, the methods in [11], [12], [15] are computationally
expensive due to the need to generate signed distance fields. As argued in section III-A, the map type
and implementation have a significant impact not only on planning global trajectories but on the overall
efficiency of the complete navigation framework.

Regarding the hardware characteristics in which the method was implemented, we can highlight that
our approach was demonstrated to work with the lowest processor requirements, while [9], [12]–[14],
[16], [20], [31] used high end Intel i7 processors and [12], [31] used an additional Tx1 Nvidia GPU.
Moreover, as detailed in the next section we were able to plan and replan trajectories at the camera
frame rate (33Hz), while [20] and [31] reported an operating frequency of 4Hz and 10Hz, respectively.
To the best of our knowledge, the platform used in our experiments represents the most frugal platform
for autonomous navigation in unknown cluttered environments demonstrated to date.

In the next section, quantitative comparisons with state of the art methods are made. In particular, we
focus on the contributions addressing the reaching a goal in an unknown environment problem [12]–[16],
[20]. Unfortunately, from the contributions reviewed in Table I focusing on this problem, only [14], [15]
have an available code. For this reason, we limit our comparison to those works, even though [14] focuses
on a narrowed problem which is based in the solution of a local replanning problem, which assumes the
existence of a goal map and a preplanned trajectory.

V. RESULTS

The proposed algorithm was implemented using the C++ language and the ROS Kinetic framework [32].
The benchmark results are shown comparing the proposed algorithm with state-of-the-art navigation
algorithms in several simulated Poisson forest scenarios generated using the method in [33]. The proposed
algorithm was also tested in a simulated maze environment and several real-world scenarios. See the video
of the experimental results at https://youtu.be/Wq0e7vF6nZM.

A. Benchmark
The benchmark experiments were performed on an Intel Core i7-5557U @ 3.1 GHz, 8 GB of RAM,

Ubuntu 16.04-LTS operating system, and using ROS Kinetic. The algorithm was compared against two

https://youtu.be/Wq0e7vF6nZM
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Algorithm Avg. Path
Length [m]

Avg.
Velocity [m/s]

Avg. Nav.
Time [s]

Gao et. al. [15] 82.56 0.2182 406.41
Usenko et. al. 1 [14] 77.572 0.48937 170.02

Ours 92.752 0.79753 146.30

TABLE III
THE OVERALL PERFORMANCE OF THE GENERATED TRAJECTORIES

state-of-the-art navigation algorithms [15] [14]. The simulated experiments were performed in several
Poisson forest scenarios with a tree density of 0.3 trees/m2 in a space of 50m× 50m× 2m. The trees
were limited to a height of two meters and a radius of twenty centimeters. The start and goal positions
of the simulated robot were chosen in opposite corners to maximize the distance traveled. The trees
per cubic meter metric represent 26.6% of the volume. The environments were simulated using Gazebo
together with Rotor-S MAV [34] and RealSense simulation packages. The simulated robot was selected
as the Hummingbird and its sensor a RealSense depth camera with 70 degrees of horizontal FoV and 43
degrees of vertical FoV. Two sets of metrics were analyzed in the benchmark. The first set relates to the
computation time of each algorithm: map generation time and motion generation time. The second set
describes the overall performance of the generated trajectories in each algorithm: total trajectory length,
average velocity and time to reach the target goal.

Some parameters had to be tuned to obtain a high success rate in our simulated forest environments,
starting from the configuration reported in each paper. The method as reported in [15] assumes a 360-
degrees horizontal FoV and ten meters sensing range. For this reason, in the experiments for [15], the
observable space was set to cover a front horizontal FoV of 180-degrees by using a multirotor MAV with
three RealSense cameras with a depth limit of 7m. The maximum velocity of the robot was set to 0.5m/s,
the maximum acceleration to 0.5m/s2 and the check horizon and stop horizon parameters were set to
8.5m and 1.0m, respectively.

The implementation of the algorithm in [14] presented some limitations as we were not able to achieve
a perfect success rate even after careful tuning. The main reason is that dynamic constraints in yaw and
acceleration are not taken into account in the trajectory generation leading to two types of failures. On
one hand collisions occur, either because the robot is moving too fast and is unable to stop before a
detected obstacle, or because it changes direction too quickly and is unable to align the FoV with the
velocity before running into unobserved obstacles. On the other hand, in some cases the robot became
unstable when the controller tried to follow trajectories requiring large accelerations. The best success rate
in our experiments was obtained by setting a maximum velocity of 0.7m/s and a maximum acceleration
of 0.7m/s2 for the robot. The distance threshold, number of optimization points and the dt parameters of
the algorithm were set to 0.5m, 5 and 0.5s, respectively.

In our algorithm, we configured the maximum depth with three meters, the minimum voxel radius of
0.1 meters and the maximum virtual map size of 150 meters. The parameters used for the trajectory
generation were Ep = 0.1m, Eψ = 1rad, for the maximum separation in the position and the orientation,
respectively. For the maximum velocity Vmax = 1m/s, the maximum acceleration Amax = 1.0m/s2, the
maximum jerk Jmax = 1.0m/s3, and the maximum angular velocity Ωmax = 0.2rad/s. Moreover, we use
the following gains: k1 = 55.0, k2 =−843.75, k3 =−5406.2, k4 =−10687.5, k5 =−10.5, k6 =−33.3.

The results of this benchmark are presented in Figure 9 and Table III. Note that our algorithm
outperforms [15] and [14] in the first set of metrics shown in Figure 9, with an average motion time
of 3.37ms against 103.2ms obtained by [15] and 35.5ms obtained by [14]; and an average mapping time
of 0.256ms against 700.7ms obtained by [15] and 2.035ms obtained by [14]. Regarding the benchmark
of the performance of the trajectories, the results are presented in Table III where it can be noted that our
method outperforms [15] and [14] in average velocity of the robot and average navigation time. However,
our approach generated, on average, slightly longer paths.
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(a) (b) (c) (d)

Fig. 10. Environments for real-world experiments: (a) 3D maze scenario. (b) Warehouse scenario. (c) Dynamic environment. (d) Forest
environment.

Fig. 11. Navigation in an unknown maze environment. On the left. In red, the generated trajectory of our algorithm to reach the goal. The
start and goal positions are given in blue and red, respectively. On the right. The map created while finding the goal.

A second scenario in which the algorithms were tested is in the maze environment shown in Figure 11.
This scenario is challenging as a successful completion requires the ability to escape “pockets” and
to maneuver in very tight spaces. Hence, navigating inside the field of view becomes of paramount
importance. A typical path execution using our algorithm is illustrated in Figure 11. Notice the loops in
the trajectory where the MAV encountered pockets. Rather than stopping completely and then turning
around while hovering in place, the MAV was able to turn around while continuing to make forward
progress safely by navigating inside the field of view all the time. We did our best to complete this
scenario with the algorithms [14], [15] but unfortunately none of our attempts were successful. In the
case of [14] we believe failure to account for yaw dynamical constraints of the system in the planning
algorithm was the main cause for the navigation always ending in collisions with the maze walls. In the
case of [15], we extended the setup to six cameras covering the full 360-degrees of horizontal field of
view and we carefully tuned the algorithm parameters including the polynomial order in the optimizer.
Nonetheless, the maze environment could not be completed as in every experiment there was a point
where the optimizer was unable to find feasible solutions even after many re-plannings. This environment
demonstrates the advantage of the trajectory generation algorithm here proposed. As the results indicate,
compared to polynomial trajectories, our method has the advantage of navigating through tight corners,
such as doorways in an indoor environment.

B. Real-World Experiments
To illustrate the effectiveness of our approach for navigating in real unknown scenarios, experiments

were performed in the different static and dynamic environments illustrated in Figure 10. The framework
was implemented on an Intel Aero Ready-To-Fly drone2 with an Intel Atom x7-Z8750 @ 1.6 GHz, 4 Gb of

1Results for this method are shown although not all tests were completed i.e., the robot crashed with the obstacles since several generated
trajectories were dynamically unfeasible

2https://www.intel.com/content/www/us/en/products/drones/aero-ready-to-fly.html

https://www.intel.com/content/www/us/en/products/drones/aero-ready-to-fly.html
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RAM, Ubuntu 16.04-LTS operating system with ROS Kinetic, an Intel RealSense Tracking Camera T265 3

for visual-inertial odometry and an Intel RealSense Depth Camera D4354 for depth images sensing.
The entire framework runs completely on-board at 33Hz alongside with a custom nonlinear control

algorithm for precise trajectory tracking. To the best of our knowledge, these experiments represent the
implementation in the most frugal platform for navigation in unknown cluttered environments demonstrated
to date. A video of the different tests can be found in https://youtu.be/Wq0e7vF6nZM.

We configured the maximum depth with four meters, the minimum voxel radius of 0.06 meters and the
maximum virtual map size of 20 meters. The parameters used for the trajectory generation were Ep = 0.1m,
Eψ = 1rad, for the maximum separation in the position and the orientation, respectively. For the maximum
velocity Vmax = 1m/s, the maximum acceleration Amax = 0.1m/s2, the maximum jerk Jmax = 0.1m/s3,
and the maximum angular velocity Ωmax = 0.2rad/s. Moreover, we use the following gains: k1 = 35.0,
k2 = 443.75, k3 =−2406.2, k4 =−4687.5, k5 =−10.5, k6 =−33.3. We obtained the average computation
time of each algorithm while running in the Intel Atom microprocessor: map generation time with 3.07ms
and motion generation time with 5.1ms seconds.

The first scenario, shown in Figure 10a, is a 3D maze, where the quadcopter had to navigate from it’s
initial position in one corner of the maze area to the opposite corner. This scenario is interesting since
the robot had to navigate through narrow passages, around tight blind corners and through windows at
different heights. The second scenario, shown in Figure 10b, is an industrial warehouse. This scenario was
chosen because it presents a potential real-world application for autonomous MAVs, e.g., for capturing
inventory and locating out of place items. The third scenario, shown in Figure 10c, is a dynamic cluttered
environment with people walking inside a lab area. This experiment exhibits the importance of keeping an
up-to-date occupied space since, without this feature, the dynamic obstacles would create “virtual” walls
blocking the paths to the goal. It is important to highlight that, from the methods described in Table I
only our framework has been demonstrated in a dynamic environment. Finally, the fourth scenario, shown
in and Figure 1 and Figure 10d, is an outdoors exploration in a forest environment, which was chosen
because represents a cluttered unstructured and natural scenario with irregular obstacles.

VI. CONCLUSION

We have proposed a complete framework for autonomous navigation. In more detail, the framework
allows robots to plan and execute trajectories in cluttered environments, simultaneously generating a map
that can be used by the robot to escape pockets and reach target locations in complex 3D environments.
Our analytical and numerical results show that the trajectories generated by the framework are safe because
they take into account both field of view restrictions as well as dynamical constraints of the robot. The
framework was implemented in a commercial multirotor MAV kit and was demonstrated to work real-
time, at the camera frame rate of 30Hz, without a discrete GPU or a high-end CPU. Future extensions of
this work include the integration of trajectory tracking and prediction of dynamic obstacles, which would
allow the robot to navigate more effectively in crowded environments.
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