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Abstract—This paper presents a method for online trajectory
planning in known environments. The proposed algorithm is a
fusion of sampling-based techniques and model-based optimiza-
tion via quadratic programming. The former is used to efficiently
generate an obstacle-free path while the latter takes into account
the robot dynamical constraints to generate a time-dependent
trajectory. The main contribution of this work lies on the
formulation of a convex optimization problem over the generated
obstacle-free path that is guaranteed to be feasible. Thus, in
contrast with previously proposed methods, iterative formulations
are not required. The proposed method has been compared with
state-of-the-art approaches showing a significant improvement in
success rate and computation time. To illustrate the effectiveness
of this approach for online planning, the proposed method was
applied to the fluid autonomous navigation of a quadcopter in
multiple environments consisting of up to two hundred obsta-
cles. The scenarios hereinafter presented are some of the most
densely cluttered experiments for online planning and navigation
reported to date. See video at https://youtu.be/DJ1IZRL5t1Q.

Index Terms—Aerial Robotics, Autonomous Agents, Au-
tonomous Vehicle Navigation, Collision Avoidance, Motion and
Path Planning

I. INTRODUCTION

THE development of algorithms to enable mobile robotic
systems to navigate in complex dynamic environments

are of paramount importance towards fully autonomous sys-
tems performing complicated tasks. Recently, there has been
great progress in online motion planning in structured environ-
ments, most notably for autonomous cars [1], [2]. However,
to achieve similar levels of autonomy in three dimensional
unstructured environments further development is required.
Such capabilities are critical, for instance, when involved in
search and rescue missions inside collapsed buildings.

Among the most efficient methods available for motion
planning of mobile robots are sampling-based methods [3]–
[6] and optimization-based methods [7], [8]. In the former
category, algorithms such as Rapidly-exploring Random Trees
(RRT) [3], [4] or Batch Informed Trees (BIT*) [5], [6],
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Fig. 1. Composite image of a quadcopter executing a trajectory planned
in a fraction of a second for an obstacle-dense environment. See video at
https://youtu.be/DJ1IZRL5t1Q.

have demonstrated to be effective in determining obstacle-free
paths online. However, their extension to trajectory planning
taking into account the robot dynamical constraints often
results in time consuming algorithms that are no longer
applicable online [9], [10]. In the latter category, optimization-
based methods take advantage of the underlying mathematical
model and have proven to be effective in handling the robot
dynamical constraints [7], [11], [12]. The downside is that
optimization problems often result in nonlinear programs [7],
[8] or Sequential Convex Programs (SCP) [12]–[14] for which
no efficient solvers exist. This characteristic makes them
unsuitable for online planning in cluttered environments.

To take advantage of the efficiency of sampling-based
algorithms and the inclusion of the dynamical constraints
in optimization-based methods, hybrid approaches have been
proposed [11], [15]–[17]. Among the most promising are
CHOMP [16] and STOMP [17]. Both methods rely on the
optimization of an objective function with smoothness and col-
lision costs solved by functional gradient descent in CHOMP
and by gradient-free candidate sampling in STOMP. Unfor-
tunately, in cluttered environments reported results show low
success rate, often converging to local minima or altogether
failing to find feasible solutions. While hybrid approaches are
promising, the main challenge for their broader use in online
planning is creating formulations and heuristics that translate
into optimization problems that can be solved efficiently,
avoiding incremental or iterative solutions.

Regarding methods for trajectory planning in cluttered envi-
ronments, in [8] semidefinite programming is used to segment
the space into convex regions while a mixed-integer convex
program determines the obstacle-free trajectory. Unfortunately
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results show infeasibility for online implementation since
reported solutions are in the order of minutes. In [15] a free-
space flight corridor is generated using an octree-based struc-
ture followed by a Quadratic Program (QP) formulation using
connected polynomial functions for each overlapping convex
region. The method assumes that each segment end-time is
given, though, no methodology for automatically generating
such times is provided. This is a major drawback as a bad
selection may result in infeasible problems which will require
iterative QP formulations, failing to provide an online solution.
A similar approach is presented in [11], in which collision-free
paths are obtained using the asymptotically optimal version
of the RRT algorithm (RRT*) proposed in [3], followed by
smooth trajectories generation using a QP that has to be solved
iteratively to determine the total time of the trajectory. Since
iterative solutions are undesirable for online implementations
and furthermore, as noted in [15], collisions may still occur as
the trajectory deviates from the original path. To overcome this
problem, the authors proposed to add intermediate waypoints,
but no method to determine the number of waypoints needed is
provided. In [14] a trajectory optimization algorithm inspired
in CHOMP was presented, which organizes the workspace in
convex regions to perform a SCP, improving the computation
time of CHOMP but with the drawback that convex regions are
hard to compute online. Also, inspired in CHOMP, in [18] an
online trajectory optimization method for local replanning was
presented. Unfortunately, it often converges to local minima
or fails to find feasible solutions, obtaining a low success rate
compared to sampling-based methods.

In this paper, a hybrid method for online trajectory plan-
ning in cluttered environments is proposed. Based on a path
generated by a sampling-based planner a QP is defined taking
into account the robot dynamical constraints. The proposed
formulation ensures feasibility of the QP, avoiding the need
to solve multiple optimization problems in an iterative or
sequential fashion [11]–[14]. Comparisons with state-of-the-
art approaches, such as [13] and [14], are presented showing
superior performance in computation time and success rate. To
illustrate its effectiveness, the proposed method was applied
for the online planning of a palm-sized quadcopter in multiple
scenarios consisting of up to two hundred static obstacles.
These scenarios are some of the most densely cluttered for
online planning of a quadcopter reported in the literature to
date. One of these experiments is illustrated in Fig. 1.

II. OUTLINE OF THE PROPOSED METHOD

A. Notation

Let B(p) be the smallest ball, centered in the robot’s
centroid with position p, containing the mobile robot. The
center of B(p) is modeled as a free particle in a non-rotating
frame with state x =

[
pT vT aT

]T , where [·]T is the transpose
operator, p is the position, v is the velocity and a is the
acceleration of the particle. The configuration space of the
particle is denoted by χ = [0,1]d , with d ∈ {2,3} as its
dimension. The obstacle region is χobsReal and the obstacle-
free space is defined as χFree = {p ∈ χ|B(p)∩χobsReal = /0}.

xstart xgoal

Generation of χobs

Path Planning

Path Refining

Time step comp. and
Waypoints generation

Constraints and Obj.
Func. formulation

Solve QP

Feasible Trajectory
p(t), v(t), a(t)

is
x(t̄) = xgoal?

YES NO
END

Dynamical

constraints
Cond.

to replan in
[t̄ + ts, t f ]?

NO

YES

xstart← x(t̄ + ts)
xgoal← x̂goal

t f

t̄← t

Commit. Trajectory
for [t̄, t̄ + ts]

QP Formulation

Sampling-based
Planning

Fig. 2. Sketch of the proposed hybrid method for trajectory generation.

The notation f (·) is used to represent a continuous signal
while f [·] represents a discrete signal. A path η : {0, · · · ,S} 7→
χfree is a sequence of position nodes. Given a discrete path
η [s] a continuous path η(s) can be obtained as the concate-
nation of the line segments connecting consecutive nodes. A
trajectory p(t) is a time-dependent sequence of positions, with
velocity v(t), acceleration a(t) and jerk j(t). Continuous-time
is represented by t while k represents discrete-time. Thus, for
a time step h, p(t) is a continuous-time trajectory while p[k]
is a discrete-time trajectory such that p(kh) = p[k].

The set of dynamical constraints defines a convex set of
allowed states x =

[
pT vT aT

]T that is denoted by Xallowed.

B. Problem statement and outline of the method

Problem 1: Consider a robot whose centroid is modeled
as a free particle with dynamics described by ṗ(t) = v(t),
v̇(t) = a(t) where p,v,a ∈ Rd and ‖a(t)‖∞ ≤ Amax. As-
suming knowledge of the environment (i.e. the obstacle
region χobsReal is known) and given the initial and fi-
nal states, xstart =

[
pT

start vT
start aT

start
]T ∈ Xallowed and xgoal =[

pT
goal vT

goal aT
goal

]T
∈ Xallowed, respectively, find a trajectory

and a time t f such that, x(0) = xstart, x(t f ) = xgoal and for all
time t ∈ [0, t f ], p(t) ∈ χFree and x(t) ∈Xallowed.

Modeling the center of the robot as a free particle is
very effective, for instance, for the trajectory planning of
quadcopters, since it has being demonstrated that smooth
trajectories for each coordinate can be treated as independent
reference outputs due to the differentially flat property [19].

Our approach to solve Problem 1 is depicted in Fig. 2 and
Fig. 3. The first step, illustrated in Fig. 3a, is to generate an
obstacle-free path η(s) ⊂ χFree connecting pstart with pgoal;
where η(s)⊂ χFree. High-clearance paths are desired in order
to avoid over-constraining the optimization problem. Hence, a
sampling-based path planning technique capable of efficiently
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Fig. 3. Illustration of the proposed hybrid method for trajectory planning.

generating such paths should be used (e.g. [20], [21]). The
minimum distance `m from the path η(s) to the obstacle
region χobs is used to set a design parameter `. If a minimum
separation `m is required then the obstacles can be further
inflated by `m before the path planning algorithm is run.

The next step is to generate a series of time-indexed
waypoints ϖ [k] with associated hypercube regions Ω[k] of
edge length 2`, as shown in Fig. 3b and Fig. 3c. These
regions will be used later to introduce soft constraints in the
formulation of the optimization problem. Note that in addition
to the waypoints inserted at regular intervals along the path,
an extra waypoint is added in each node η [s]. While these
extra waypoints may be redundant in some cases, i.e., where
the adjacent path segments don’t present a drastic change of
direction, they are used to guarantee existence of a trajectory
solution. As illustrated in Fig. 3d, it is required that such a
solution satisfies p[k] = p(hk)∈Ω[k]; where the time step h is
chosen as a function of ` and the maximum acceleration Amax
of the robot. Let K + 1 be the number of waypoints ϖ , then
t f = Kh is the total time of the trajectory.

It is shown that following our formulation, the posed
quadratic optimization problem is guaranteed to be feasible.
Furthermore, let the separation b(t) between η(s) and p(t) be
given by

b(t) = min{‖p(t)−λ (η [s+1]−η [s])+η [s]}‖2 :
λ ∈ [0,1],s ∈ {0, . . . ,S−1}}.

The proposed method ensures that b(t) is bounded by 3
2`
√

d,
then p(t) ∈ χFree for all t ∈ [0, t f ], as illustrated in Fig. 3e.
This is also an important contribution since previous proposals
reported in the literature either do not guarantee to be collision-
free, see e.g. [16], [17] or only guarantee that a discrete
trajectory generated by the QP formulation is collision-free
but not the interpolated trajectory that is actually executed by
the robot, see e.g. [12]. Moreover, they require iterative QP

formulations with decreasing sampling time.
In many important situations, it is necessary to compute

a new trajectory before the robot has completed its current
plan. For example, a path that was previously open may have
become blocked, or a new task may require the robot to
move towards a different final destination. Hence, as depicted
in Fig. 2 while the robot is executing the last solution of
Problem 1 it should continuously check if a change of plan
is required. Let t̄ be the current time. If the conditions to re-
plan are met then a new optimization problem is formulated
with initial state xstart← x(t̄+ts) and final conditions xgoal, and
a new trajectory is generated as described above. Otherwise,
the trajectory in the interval [t̄, t̄ + ts] is committed to the
trajectory tracking controller while the path related to the
interval [t̄ + ts, t f ] is further refined, for a limited number of
iterations, in search of improving the cost or the clearance of
the solution, using asymptotically optimal methods [3].

III. PRELIMINARIES: SAMPLING-BASED PATH PLANNING

Sampling based, or stochastic search methods to generate
obstacle-free paths [4]–[6], are popular due to their effective-
ness at finding traversable paths while avoiding discretization
of the state space. In this paper, collision-free path genera-
tion is illustrated using Informed Optimal Rapidly-exploring
Random Trees (IRRT*) [22]. This algorithm improves the
current solution iteratively via incremental rewiring, converg-
ing asymptotically to an optimal solution. While any other
technique to generate a path could have been used, such
as BIT* [5] or Regionally Accelerated BIT* (RABIT*) [6],
the IRRT* algorithm was selected because it allows anytime
planning by limiting its solutions [23]. A brief review of the
IRRT* algorithm [22] is presented in this section.

Assume that the initial position pstart ∈ χfree and the final po-
sition pgoal ∈ χfree are given. The aim is to find a path η∗, that
minimizes a given cost function c : Σ(η) 7→R≥0, where Σ(η)
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is the set of all feasible paths, i.e. η∗ = argminη∈Σ(η) c(η).
Following the standard RRT* algorithm [3], [4] a new random
node in χFree is sampled and its neighbor nodes within a ball
of radius rRRT∗ are rewired if this provides a path with lower

cost function, where rRRT∗ = γRRT∗
(

log(δ )
δ

) 1
d ; δ is the number

of states in the tree and γRRT∗ an appropriate constant given
in [3]. This paper seeks to minimize the path length in Rd , so
the cost function c is based on the Euclidean distance.

After a path has been obtained using RRT*, the IRRT* algo-
rithm allows increasing the probability of reducing the cost of
the solution in subsequent rounds of RRT* by restricting the
sampling region. In [22] it is shown that the new nodes that
may improve the cost of the path are necessarily contained in
the ellipse defined by

χinform = {x ∈ χ : ‖pstart−x‖2 +‖x− pgoal‖2 ≤ cbest},

where cbest is the cost of the current solution. New nodes
sampled from χinform are generated by taking random samples
xball from a unitary d-ball and then mapped to χinform using
xellipse = CLxball +xcentre, where

L = diag
{

cbest

2
,

d−1︷ ︸︸ ︷
(c2

best− c2
min)

1/2

2
, · · · ,

(c2
best− c2

min)
1/2

2

}
,

is a diagonal matrix, C ∈ SO(d) is the rotation between the
origin of the d-dimensional Euclidean space and the vector
pgoal− pstart and xcentre = (pgoal + pstart)/2.

IV. OPTIMIZATION-BASED TRAJECTORY PLANNING

The QP formulation derived in this section integrates in-
formation from the obstacle-free path η(s) together with
knowledge of the dynamical constraints of the robot. The
problem is posed in such a way that the need for iterative
solutions is avoided and the resulting trajectory is guaranteed
to be collision-free, i.e. ∀t, p(t) ∈ χFree.

To guide the solution of the QP and to ensure that the
separation b(t) between the planned path η(s) and the fi-
nal trajectory p(t) remains adequately bounded, K + 1 time-
indexed waypoints ϖ [k] are placed along the path η(s). Each
waypoint ϖ [k] has an associated set of soft constraints defining
a hypercube region Ω[k], as illustrated in Fig. 3c. These
constraints lead to p[k] = p(kh) ∈Ω[k], k = 0, . . . ,K. The time
step h and the maximum velocity Vmax are obtained based on
the value of the parameter ` and the maximum acceleration
Amax. This method ensures that a trajectory p(t) can always be
found which travels from one hypercube region to the next in
time h while the separation b(t) remains bounded by 3

2`
√

d,
as illustrated in Fig. 4. Since there is a minimum clearance of
`m, this property guarantees a collision-free trajectory. In the
following, this procedure is explained in greater detail.

A. Problem constraints formulation

Let κ0 = κS = 0 and κs =
⌈ 1
` ‖η [s+1]−η [s]‖2

⌉
, s ∈

{1, . . . ,S−1}. A sequence of waypoints are obtained such that
ϖ0[κ0] =η [0], ϖS[κS] =η [S] and ϖs [i] = i

κs
(η [s+1]−η [s])+

2
3
`
√ d

`

ϖ [k],ϖ [k+1]b(t)

p(t)
p[k]

p[k+3]

p[k−2]

p[k+1]

Ω[k−2]

ϖ [k−2]

Ω[k+3]

ϖ [k+3]

Fig. 4. If Vmax and h are a solution to Problem 2, then the robot takes
time h to navigate from one point in the discrete trajectory to the next (i.e.
p(kh) = p[k], k = 0, . . . ,K) while the separation b(t) between the resulting
trajectory p(t) and the continuous path η(s) is bounded by 2

3 `
√

d.

η [s], i ∈ {0, . . . ,κs}. The time-indexed waypoint ϖ [k] is ob-
tained as the (k−1)−th element of the sequence

ϖ = {ϖ0[κ0],ϖ1[0], . . . ,ϖ1[κ1], . . . ,

ϖS−1[0], . . . ,ϖS−1[κS−1],ϖS[κS]}.

The generation of time-indexed waypoints is illustrated
in Fig. 3b; notice that ϖs−1[κs−1] = ϖs[0] = η [s] or equiva-
lently ϖ [k] = ϖ [k+1] = η [s] for some k. Thus, in addition to
the generation of waypoints in-between two consecutive nodes,
this procedure also adds two waypoints at each node η [s] of
the path η , as illustrated in Fig. 3b and Fig. 4 . Furthermore,
as illustrated in Fig. 3c, each waypoint ϖ [k] has an associated
hypercube of edge length 2` defined by

Ω[k] = {ρ : ‖ρ−ϖ [k]‖∞ ≤ `}. (1)

The Ω[k] regions are used as constraints on the convex
optimization problem restricting a solution of the trajectory
p(t) to be one satisfying p[k] = p(kh) ∈Ω[k], k ∈ {0, . . . ,K},
(or equivalently ‖ϖ [k]− p[k]‖∞ ≤ `) as illustrated in Fig. 3d;
where h is the time step hereinafter derived and K = |ϖ |−1.
Hence, if such constraints are satisfied, the total time of the
trajectory along the path η is t f = Kh.

Problem 2: Based on the design parameter `, the maximum
acceleration Amax and taking into account particle kinemat-
ics for motion with constant acceleration ‖a[k]‖∞ ≤ Amax in
t ∈ (kh,(k+ 1)h], k ∈ 0, · · · ,K, find Vmax and h such that the
following conditions are satisfied:

i) Let ‖ϖ [k+ 1]−ϖ [k]‖2 = ` and assume that p[k] ∈ Ω[k]
and v[k] satisfies ‖v[k]‖∞ ≤ Vmax and v[k]T (ϖ [k + 1]−
ϖ [k]) ≥ 0. Then, there exists a constant acceleration
‖a[k]‖∞≤Amax such that p[k+1]∈Ω[k+1], ‖v[k+1]‖∞≤
Vmax and v[k+1]T (ϖ [k+1]−ϖ [k])≥ 0.

ii) Let ϖ [k] = ϖ [k+1] = η [s] and assumme that p[k]∈Ω[k],
and ‖v[k]‖∞ ≤Vmax. Then, there exists a pair of constant
accelerations ‖a[k]‖∞≤Amax and ‖a[k+1]‖∞≤Amax, such
that p[k + 1] ∈ Ω[k + 1], ‖v[k + 1]‖∞ ≤ Vmax, p[k + 2] ∈
Ω[k+2] and ‖v[k+2]‖∞ ≤Vmax with v[k+2]T (ϖ [k+2]−
ϖ [k+1])≥ 0.

iii) For p[k] ∈ Ω[k] and ‖v[k]‖∞ ≤ Vmax and with ‖a[k]‖∞ ≤
Amax such that p[k+1]∈Ω[k+1] and ‖v[k+1]‖∞ ≤Vmax,
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it holds that for t ∈ [kh,(k + 1)h], the separation b(t)
between p(t) and the straight line connecting η [s] and
η [s+1] is bounded by |b(t)| ≤ 3

2`
√

d.
Assuming condition i) is satisfied implies that the particle

can move in the direction of the path from p[k−2] ∈Ω[k−2]
to p[k−1]∈Ω[k−1] satisfying the constraints on velocity and
acceleration. Condition ii) applies when the particle moves
between p[k] and p[k+1] while it undergoes a sharp change
of direction in the path. If this condition is satisfied then a
trajectory satisfying the constraints on velocity an acceleration
can change direction in a time h and continue satisfying
such constraints. To account for such cases the formulation
places two identical waypoints at the path node η [s], i.e.
ϖ [k] = ϖ [k+1] = η [s]. Finally, condition iii) implies that p(t)
is also collision free since b(t) is bounded in such way that
p(t) ∈ χFree, ∀t ∈ [0, t f ].

It is shown, in Lemma 5–Lemma 7 in the Appendix, that a
selection of Vmax and h solving Problem 2 is

V 2
max := `Amax, h2 :=

4`
Amax

. (2)

It follows that there exists a collision-free trajectory p(t) with
duration t f satisfying p[k]∈Ω[k] and the dynamical constraints
‖v[k]‖∞ ≤ Vmax, ‖a[k]‖∞ ≤ Amax such that the separation b(t)
between p(t) and η(s) is bounded by 3

2`
√

d.
Theorem 3: Let χFree be the obstacle free space, η be an

obstacle-free path connecting pstart to pgoal and Vmax,h defined
by (2). Then given `, there exist a trajectory p(t) such that ∀t ∈
[0, t f ] where t f = Kh = (|ϖ |−1)h, the following are satisfied:
• |b(t)| ≤ 3

2`
√

d i.e. p(t) ∈ χFree
• ‖v[k]‖∞ ≤Vmax
• ‖a[k]‖∞ ≤ Amax
• p(0)= pstart, v(0)= vstart, v(t f )= vgoal for given pstart,vstart

and vgoal

Proof: The proof follows from Lemma 5 – Lemma 7.

B. Quadratic Program Formulation

In the following a QP to produce a trajectory for the robot is
posed taking into account its dynamical constraints. This for-
mulation, is based of the constraints derived in Section IV-A.

The objective function for the convex problem is formulated
as a function of the acceleration by

min
a

aT Ha, (3)

where a= [a[0]T · · · a[K]T ]T ∈RdK is a vector of accelerations
with a[k] ∈ Rd as the acceleration at the discretization time
k and the matrix H ∈ RdK×dK is a positive definite constant
matrix. By selecting H appropriately a quadratic objective
function of (p,v,a, j) can be obtained [13]. For instance, since
jerk is given by j[k] = a[k+1]−a[k]

h by taking H =W TW

[w]ij =

 −1/h if i = j,
1/h if i = j−1,

0 otherwise

we obtain an objective function for minimizing jerk. Thus, the
following convex optimization problem is defined:

Algorithm Success
Rate

Avg. Path
Length [m]

Avg. Max
Velocity [m/s]

Avg. Comp.
Time [s]

iSCP 239/500 11.6886 1.4612 0.4920
CHOMP 83/500 14.9088 1.7677 0.4495

Ours 500/500 15.8581 1.5266 0.1519

TABLE I
COMPARISON IN A POISSON FOREST WITH A DENSITY OF 3.2 trees/m2 .

Problem 4: Taking p[k] and v[k] as

p[k] =p[0]+hkv[0]+
h2

2

k−1

∑
i=0

(2(k− i)+3)a[i]

v[k] =v[0]+h
k−1

∑
i=0

a[i],

obtain a sequence of accelerations a = [a[0]T , . . . ,a[K]T ]T that

minimizes aT Ha

subject to

p[0] = pstart, v[0] = vstart, a[0] = astart,

‖ϖ [k]− p[k]‖∞ ≤ `, ‖v[k]‖∞ ≤Vmax, ‖a[k]‖∞ ≤ Amax

for k = 1, . . . ,K−1 and

p[K] = pgoal, v[K] = vgoal, a[K] = agoal.

Notice that ‖p[k]−ϖ [k]‖∞ ≤ ` is equivalent to p[k] ∈Ω[k].
Since p[k] and v[k] are linear functions of a[k] the optimiza-

tion problem given in Problem 4 is convex. Moreover, notice
that by Theorem 3 the posed QP formulation is feasible. This
approach, unlike [11]–[13], [24], avoids iterative formulations.

V. RESULTS

The proposed algorithm was programmed in C++ and im-
plemented on a PC running Ubuntu 14.04-LTS with Intel Core
i5-3210M @ 2.50GHz and 4 GB of RAM. The QP is solved
using Mosek [25]. First, benchmarking results are shown
comparing our method with state-of-the-art algorithms based
on simulations in various forest environments generated using
the method in [26]. Then, we present experimental results
obtained with a Crazyflie 2.0 [27] quadcopter in different three
dimensional scenarios with varying number of obstacles and
complexity - see video at https://youtu.be/DJ1IZRL5t1Q.

A. Benchmark results

The algorithm was compared against the Incremental SCP
(iSCP) algorithm described in [13] and against CHOMP [16].
Simulations were run in different Poisson forest environ-
ments [26] with varying tree densities in a simulation space of
10m× 10m× 10m. The height of the trees was set following
a uniform distribution between 5m to 10m. The start and goal
positions for the mobile robot were selected randomly, such
that the minimum travel distance was 8m starting and ending
at rest with a maximum acceleration of 20m/s2. For each
benchmark 500 tests were performed.

https://youtu.be/DJ1IZRL5t1Q
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(a) 3D Planning in a 10m×10m×10m Poisson
forests with density of 3.2 trees/m2.
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Fig. 5. Algorithm comparison among iSCP, CHOMP and the proposed approach on different forest environments varying on tree density.

Some parameters had to be selected for each algorithm. The
iSCP was configured using a total time of 15 seconds and a
discretization step of 0.2 seconds. In the case of CHOMP it
was configured using a fixed value N of 100 points. These
parameters were selected trying to balance the success rate and
the computation time. They were set based on trial and error
since no methodology is known to calculate them in advance.
Finally, for the proposed algorithm, a minimum separation to
the obstacles is required, as described in Section II. Thus,
the obstacles were inflated by `m, resulting in ` = 0.05. For
path generation a goal region with a radius of 0.005m was
specified. The IRRT* algorithm was run at most four rounds
of path generation followed by refinement of the sampling
region; the algorithm was stopped early if no reduction to the
cost of the solution was obtained in the last round of RRT*
compared to the previous round. Table I shows the benchmark
results for a forest density of 3.2 trees/m2. The algorithms
are compared in terms of their success rate, average mean
path length, average maximum absolute velocity and average
computing time. Although, the iSCP and CHOMP performed
slightly better in path length and maximum velocity, respec-
tively, the proposed approach excelled in success rate and its
computing time was significantly lower. This success rate is
inherited from the sampling-based path planning algorithm
(which is probabilistic complete), since our method ensures
the feasibility of the QP problem.

Fig. 5 shows a benchmark where the tree density was varied
between 0.7 and 3.2 trees/m2. Typical trajectories are shown in
Fig. 5a. For ease of visualization, the thickness of the paths and
the radius of the trees are not drawn at scale. The comparison
on computing time and success rate are shown in Fig. 5b and
Fig. 5c, respectively.

B. Experimental Results

The test setup consisted of an Optitrack motion capture
system with 15 infra-red cameras providing localization with
sub-millimeter accuracy. The motion capture software and the
trajectory planning algorithm were run on the same computer.
The current position of the quadcopter and the corresponding
reference point was broadcasted every 6 ms. The firmware

Fig. 6. A composite image of a quadcopter performing a trajectory in a 3x5
meters maze with average planning time of ∼ 100ms.

of the Crazyflie 2.0 was modified to implement a custom
nonlinear control algorithm for precise trajectory tracking.

The first scenario, shown in Fig. 6, is a 3m×5m maze where
the quadcopter had to navigate from an initial position inside
the maze to a final goal. The task was repeated multiple times
such that the goal of the last task became the initial position
for the next. A new goal was generated by moving a marker
inside the maze. The same maze environment was simulated
in a computer, obtaining an average planning time of ∼ 100ms
based on 500 trials with random start and end points.

The algorithm was also tested in a 3-dimensional scenario
consisting of two hundred interwoven strings and twenty
poles inside a volume of two cubic meters. This scenario,
illustrated in Fig. 1, is similar to the one presented in [8]
which consisted of 20 interwoven strings. Planning times in
the order of minutes were reported in that work compared to
a fraction of a second in the present work. The scenario was
manually mapped using the motion capture system. During the
experiment, new goals were provided online to the quadcopter
while it navigated inside the complex environment.
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Parameter
` [m]

Average
Mean Path
Length [m]

Average
Max

Velocity [m/s]

Average
Max

Acc [m/s2]

Average
Compute
Time [s]

0.010 3.6899 0.4391 2.5828 0.9472
0.015 3.8931 0.5386 2.6315 0.4750
0.020 3.9431 0.6226 2.6509 0.2922
0.025 4.1916 0.6923 2.7354 0.2588
0.030 4.6593 0.7675 2.8683 0.2986
0.035 4.7108 0.8268 2.8670 0.3853

TABLE II
COMPARISON OF THE RUN TIME FOR DIFFERENT VALUES OF `.

For these experiments, the radius r of B(p) was selected to
be 0.035m based on the quadcopter dimensions. Considering
also a diameter of 0.005m for the strings and an average
tracking error of 0.01m, the maximum ` resulted in 0.035m.
The value of ` was set to 0.02. The maximum acceleration in
these experiments was set to 20m/s2 in each axis based on
trial and error. Using these parameters, the algorithm took on
average ∼ 300ms in a benchmark of 500 simulated trials.

Since the performance of the algorithm is affected by the
desired minimum separation `m, and as a consequence by
the parameter `, a benchmark varying the values of ` was
performed for the same scenario. The results are presented
in Table II where it can be seen that a low value of `
results in short trajectories, but higher computing time due
to increased size of the QP problem. On the other hand, a
large value of ` results in a smaller QP problem while a larger
separation between the path and the trajectory is allowed and
a higher-clearance is obtained, resulting in longer travels for
the trajectories. Finally, it can be observed that the sampling-
based planner takes longer to find a solution as ` is increased.
This is expected since χobs region size depends on `.

VI. CONCLUSIONS AND FUTURE WORK

An algorithm for online trajectory planning and replanning
of mobile robots was presented. The proposed method uses a
sampling-based planning algorithm to efficiently determine an
obstacle-free path. Then, an optimization program takes into
account the robot dynamical constraints to generate a time
dependent trajectory. The main contribution of this method
lies in the formulation of the optimization problem that is
guaranteed to be feasible, avoiding iterative formulations. The
effectiveness of this method was shown by applying it to
the online planning of a quadcopter in multiple scenarios
consisting of up to two hundred obstacles. The scenarios
presented herein are some of the most obstacle-dense scenarios
reported to date for online planning of a quadcopter.

Our approach was contrasted with state-of-the-art algo-
rithms showing a significant improvement in computation time
and success rate, which demonstrates its effectiveness for
online planning in obstacle-dense environments.

As for future work, we aim to apply the algorithm in
complex dynamic environments as well as its extension to
multi-agent planning in obstacle-dense environments.

APPENDIX
AUXILIARY RESULTS FOR THE CONSTRAINTS DERIVATION

Notice that, since the waypoints connecting η [s] and η [s+1]
are placed in the line segment λ (η [s+ 1]−η [s])+η [s], for
some η [s] and some λ ∈ [0,1], it is always possible to find
a coordinate transformation, for each pair η [s], η [s+1] with
orthogonal axis, in such a way that λ (η [s+1]−η [s])+η [s] lie
in the x-axis (with the x-axis pointing toward η [s+1]) of the
new coordinate system. The notation px, (resp. vx and ax) is
used to represent the component of the position (resp. velocity
and acceleration) along the x-axis.

Notice that, in this new coordinate system Ω[k +
1] =

{
ρ : ρ = γ +[` 0 · · · 0]T ,γ ∈Ω[k]

}
. Additionally, with-

out loss of generality, the origin is placed at ϖ [k].
Lemma 5: Given the set of time-indexed waypoint re-

gions (1) and taking Amax and h as in (2), then for p[k] ∈Ω[k]
and v[k] such that ‖v[k]‖∞ ≤Vmax and v[k]T (ϖ [k+1]−ϖ [k])≥
0, there exists a constant acceleration ‖a[k]‖∞ ≤Amax such that
p[k+1]∈Ω[k+1], ‖v[k+1]‖∞≤Vmax and v[k+1]T (ϖ [k+1]−
ϖ [k])≥ 0.

Proof: The proofs will be performed independently for
each coordinate of the new coordinate system.

For the x–coordinate. The conditions v[k]T (ϖ [k + 1] −
ϖ [k])≥ 0, v[k+1]T (ϖ [k+1]−ϖ [k])≥ 0, ‖v[k]‖∞ ≤Vmax and
‖v[k+1]‖∞≤Vmax imply that vx[k] and vx[k+1] lie in [0,Vmax].

Let p[k] ∈ Ω[k+1] and vx[k] ∈ [0,Vmax] and notice that (2)

implies Amax =
2Vmax

h
. Then, with the acceleration

ax[k] =
Vmax−2vx[k]

h
∈
[
−Vmax

h
,
Vmax

h

]
⊂ [−Amax,Amax]

is obtained that

px[k+1] = px[k]+ ` and vx[k+1] =−vx[k]+Vmax ∈ [0,Vmax]

For the y–coordinate.With vy[k] ∈ [−Vmax,Vmax], and

ay[k] =−
2vy[k]

h
∈
[
−2Vmax

h
,

2Vmax

h

]
= [−Amax,Amax]

Then py[k+1] = py[k] and vy[k+1] =−vy[k].
For the rest of the coordinates. The argument is equivalent

as in the y–coordinate. The above results shows that

p[k+1] = p[k]+ [` 0 · · · ]T ∈Ω[k+1].

Additionally, v[k+1]]T (η [s+1]−η [s])≥ 0 in the new co-
ordinate system is [vx[k+1] vy[k+1] · · · ][α 0 · · · 0]T ≥ 0, for
some α > 0. In this way [vx[k+1] vy[k+1] · · · ][α 0 · · · 0]T =
αvx[k+1]≥ 0, which completes the proof.

Lemma 6: Let ϖ [k] = ϖ [k+1] = η [s] and let Amax and h be
given as in (2). Then given the set of time indexed waypoint
regions (1) for p[k] ∈Ω[k], and v[k] satisfying ‖v[k]‖∞ ≤Vmax,
there exists a pair of constant accelerations ‖a[k]‖∞ ≤ Amax
and ‖a[k+1]‖∞ ≤ Amax, such that p[k+1] ∈ Ω[k+1], ‖v[k+
1]‖∞ ≤ Vmax, p[k+ 2] ∈ Ω[k+ 2] and ‖v[k+ 2]‖∞ ≤ Vmax with
v[k+2]T (ϖ [k+2]−ϖ [k+1])≥ 0.

Proof: The proofs will be performed independently for
each coordinate of the new coordinate system.
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For the x–coordinate. The transformation changes the con-
straints as follows. For ϖ [k] placed at the origin, px[k] ∈
[−α`,α`], vx[k] ∈ [−αVmax,αVmax], ax[k] ∈ [−αAmax,αAmax]
for some α ∈ [1,

√
d]. Thus, in the new coordinate system

px[k] can be written as px[k] = α`(2λx,1−1), λx,1 ∈ [0,1] and
vx[k] = αVmax(2λv,1−1), λv,1 ∈ [0,1] and choosing

a1 = αAmax

(
1−

λx,1

2
−

3λv,1

2

)
∈ [−αAmax,αAmax]

a2 = αAmax

(
λx,3 +λx,2−

1
2

)
∈ [−αAmax,αAmax]

with

λx,2 =
1
2
(λx,1 +λv,1) ∈ [0,1], λv,2 = 1−λx,2 ∈ [0,1]

λx,3 =
Vf

2Vmax
∈
[

0,
1
2

]
, Vf ∈

[
0,

Vmax

α

]
is obtained that

px[k+1] = α`(2λx,2−1) ∈ [−α`,α`]

vx[k+1] = αVmax(2λv,2−1) ∈ [−αVmax,αVmax]

px[k+2] = 2α`λx,3 ∈ [0, `] , vx[k+2] = αVf

For the rest of the coordinates. The result for the y-
coordinate in the proof of Lemma 5 can be used for the
interval [kh,(k + 1)h] and for [(k + 1)h,(k + 2)h], so that
py[k] = py[k+1] with feasible velocities and accelerations and
the same for the rest of the coordinates. The above results can
be used to prove that p[k+1]∈Ω[k+1] and p[k+2]∈Ω[k+2]
while v[k+2]T (η [s+1]−η [s])≥ 0 in a similar way as in the
proof of Lemma 5, which completes the proof.

Lemma 7: Given the set of time indexed waypoint re-
gions (1) and taking Amax and h as in (2), then for p[k] ∈
Ω[k] and ‖v[k]‖∞ ≤ Vmax and with ‖a[k]‖∞ ≤ Amax such that
p[k+1]∈Ω[k+1] and ‖v[k+1]‖∞ ≤Vmax, then |b(t)| ≤ 3

2`
√

d
for t ∈ (kh,(k+1)h).

Proof: To show this argument is not required to rotate
the coordinate system but only to place the origin at ϖ [k].
Taking into account first only the x-coordinate, the biggest
separation for px(t), t ∈ [kh,(k+1)h] occurs when px[k] =±`
and vx[k] = ±Vmax. The only way that px[k+ 1] ∈ [−`,`] and
vx[k+ 1] ∈ [−Vmax,Vmax] for feasible ax[k] is that px[k+ 1] =
px[k] and v[k + 1] = −v[k]. For this condition it is required
that ax[k] =∓Amax. Due to the symmetry of the problem, the
maximum value of px(t) for t ∈ (kh,(k + 1)h) occurs when
t = t∗ =

(
k+ 1

2

)
h so that x(t∗) = 3

2`. If every coordinate has a
maximum separation of 3

2` then b(t) will have a bound given
by |b(t)| ≤ 3

2`
√

d.
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