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Abstract Recently, there has been a great deal of attention in a class of controllers
based on time-varying gains, called prescribed-time controllers, that steer the sys-
tem’s state to the origin in the desired time, a priori set by the user, regardless of the
initial condition. Furthermore, such a class of controllers has been shown to main-
tain a prescribed-time convergence in the presence of disturbances even if the dis-
turbance bound is unknown. However, such properties require a time-varying gain
that becomes singular at the terminal time, which limits its application to scenarios
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Unidad Académica Zapopan. Cam. Arenero 1101, 45019, Zapopan, Jalisco, Mexico. e-mail:
david.gomez.g@ieee.org

1

ar
X

iv
:2

31
1.

02
47

3v
1 

 [
m

at
h.

O
C

] 
 4

 N
ov

 2
02

3

https://doi.org/10.1007/978-3-031-37089-2_3
rodrigo.aldana.lopez@gmail.com
richard.seeber@tugraz.at
haimovich@cifasis-conicet.gov.ar
haimovich@cifasis-conicet.gov.ar
david.gomez.g@ieee.org


2 R. Aldana-López et al.

under quantization or measurement noise. This chapter presents a methodology to
design a broader class of controllers, called predefined-time controllers, with a pre-
scribed convergence-time bound. Our approach allows designing robust predefined-
time controllers based on time-varying gains while maintaining uniformly bounded
time-varying gains. We analyze the condition for uniform Lyapunov stability under
the proposed time-varying controllers.

1 Introduction

Stabilizing a system in finite time in the presence of disturbance is one of the main
features of sliding mode control [20]. However, in finite-time stability, the conver-
gence time may be an unbounded function of the system’s initial condition. Thus,
knowledge on the region of admissible initial conditions may be needed to deal with
scenarios under time constraints. Time constraints are often present, for instance, in
fault detection, isolation, and recovery schemes [24], where failing to recover from
the fault on time may lead to an unrecoverable mode, or in missile guidance ap-
plications [26], where the control guidance laws require stabilization in the desired
time [21].

A class of finite-time stabilization exists, called fixed-time stabilization, with a
convergence-time bound independent of the initial conditions, which make it at-
tractive to deal with time constraint. Multiple methods have been developed to ob-
tain fixed-time stabilization, such as Lyapunov differential inequalities [16] and ho-
mogeneity theory [3]. However, not every technique allows setting a priori the de-
sired upper bound for the convergence time, as a convergence time-bound estimate
may be unknown [4]. Thus, developing methods for fixed-time stabilization with a
convergence-time bound defined a priori by the user has recently received a great
deal of attention [17, 11, 1, 21].

On the one hand, autonomous fixed-time controllers have been explored in [1,
11, 16, 7, 27], with emphasis on estimating an upper bound for the settling time
(UBST) of the closed-loop system. Although methodologies for obtaining the least
UBST have been proposed in the literature, see e.g. [1, 2], this approach has proven
challenging for higher-order systems, resulting in very conservative estimations of
an UBST [27], and yielding over-engineered controllers with an unnecessarily large
control magnitude.

On the other hand, prescribed-time controllers based on time-varying gains have
been proposed in [21, 22], which have the remarkable property that, for any nonzero
initial condition, its convergence time is precisely the desired one, and that no in-
formation on the disturbance bound is needed to steer the system’s state to the ori-
gin. Unfortunately, the methodology requires time-varying gains that tend to infin-
ity at the terminal time, which is problematic under quantization or measurement
noise. Therefore, controllers with a predefined convergence time, taking advantage
of time-varying gains while maintaining them bounded, are of great interest [10, 6].
Furthermore, it is essential to analyze the uniform (with respect to time) stability
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property when using controllers based on time-varying gains, as the absence of uni-
form stability may lead to an inherent lack of robustness. However, to the best of
our knowledge, such analysis is missing in the existing prescribed-time control lit-
erature.

In this chapter, we present a methodology for designing robust controllers such
that the origin of its closed-loop system is fixed-time stable with a desired UBST,
i.e., predefined-time controllers. Our analysis is based on relating the closed-loop
system with an auxiliary system through a time-varying coordinate change and a
time-scale transformation. The methodology is motivated by an analysis of the first-
order case. It is shown that applying it to a linear controller leads to a minimum
energy solution. It generally allows to reduce the required control energy also when
redesigning other controllers. Based on the auxiliary system’s stability properties,
interesting features are obtained in the closed-loop system under the proposed con-
troller. Such an approach allows deriving a controller with the desired convergence
time regardless of the initial condition, as well as predefined-time controllers with
uniformly bounded time-varying gains. Finally, this methodology is complemented
by studying the uniform Lyapunov stability property, providing necessary and suf-
ficient conditions such that our methodology yields a uniformly Lyapunov stable
closed-loop system’s equilibrium.

Additionally, we show that our approach yields existing autonomous controllers
as an extreme case, while the use of time-varying gains provides extra degrees of
freedom for reducing the control effort.

The chapter is organized as follows: in Section 2 we present the example of a
straightforward first-order system exhibiting interesting convergence properties and
from which our general strategy using time-scale transformations arises. In Sec-
tion 3 we provide some preliminaries on fixed-time stability and our problem of in-
terest regarding the design of controllers with predefined convergence-time bound.
In Section 4 we provide a methodology to solve this problem in some particular
cases, including first and second-order systems. We discuss some disadvantages of
some prescribed-time convergence algorithms proposed in the literature, where the
time-varying gains are unbounded. Finally, in Section 5 we introduce the main result
of this chapter, which is the design methodology for arbitrary-order controllers with
predefined convergence time-bound. In addition, we discuss the need to consider
bounded time-varying gains by examining the uniform Lyapunov stability property.

Notation: We use boldface lower case letter for vector and boldface capital letters
for matrices. The notation J := [ai j] ∈Rn×n denotes a single Jordan block with zero
eigenvalue, i.e., a square matrix with ai j = 1 if j = i+1 and ai j = 0 otherwise. The
vector bi ∈ Rn denotes a vector with one in the i-th entry and zeros otherwise. Let
R+ = {x∈R : x≥ 0} and R̄+ =R+∪{∞}. For a function φ : I →J , its reciprocal
φ(τ)−1, τ ∈I , is such that φ(τ)−1φ(τ) = 1 and its inverse function φ−1(t), t ∈J ,
is such that φ(φ−1(t)) = t. Given a matrix A ∈ Rn×m, AT represents its transpose.
For a signal y : R+ → R, y(i)(t) represents its i−th derivative with respect to time at
time t. To denote a first-order derivative of y(t), we simple use the notation ẏ(t).

Simulations: Throughout the chapter, simulations are performed on OpenMod-
elica using the Euler integration method with step size 1e-5 and tolerance 1e-6.
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2 Motivating Example

Consider a first-order integrator

ẋ = u+d(t)

where |d(t)| ≤ ∆ with a non-negative constant ∆ . The aim is to design a feedback
control law such that the origin is reached in a desired prespecified time Tc.

Let us first consider the unperturbed case, i.e., where ∆ = 0. To derive a con-
troller, start from an auxiliary system

dx
dτ

=−x, (1)

written in an artificial time variable τ , whose solution is

x(τ) = x0 exp(−τ).

Our approach is to use a time-scale transformation τ = ϕ(t) such that system (1),
written with respect to the time variable t, reaches the origin at t = Tc. For this trans-
formation to be a suitable time-scale transformation, it must be: strictly increasing,
differentiable, satisfy limt→T−

c
ϕ(t) = ∞ and ϕ(0) = 0 (a characterization of such

time-scale transformations is given in [2]). A simple example of a time-scale trans-
formation with the above requirements is

τ = ϕ(t) =− ln(1−T−1
c t)

whose inverse is given by

t = ϕ
−1(τ) = Tc (1− exp(−τ)) .

Thus, the dynamics of (1) in t-time can be written, according to the chain rule, as

dx
dt

=

[
dx
dτ

]
τ=ϕ(t)

· dτ

dt

=− 1
(Tc − t)

x

with a solution
x(ϕ(t)) = x0 · (1−T−1

c t).

Clearly,
lim

t→T−
c

x(ϕ(t)) = 0.

Therefore, a controller

u =− 1
(Tc − t)

x, (2)
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steers the state of the unperturbed integrator to the origin at a time Tc.
Let us now consider the case where ∆ ̸= 0, under the controller (2). To analyze

its convergence, let us now rewrite the closed-loop system dynamics in τ-time

dx
dτ

=

[
dx
dt

]
t=ϕ−1(τ)

· dt
dτ

=

[
− 1
(Tc − t)

x+d(t)
]

t=ϕ−1(τ)

·Tc exp(−τ)

=−x+Tc exp(−τ)d(ϕ−1(τ)).

The solution thus satisfies

|x(τ)|=
∣∣∣∣x0 exp(−τ)+

∫
τ

0
exp(−(τ −ξ ))Tc exp(−ξ )d(ϕ−1(ξ ))dξ

∣∣∣∣
=

∣∣∣∣x0 exp(−τ)+Tc exp(−τ)
∫

τ

0
d(ϕ−1(ξ ))dξ

∣∣∣∣
≤ exp(−τ)(|x0|+∆Tcτ).

Therefore, limτ→∞ x(τ) = 0. Hence, in t-time, limt→T−
c

x(t) = 0.
To maintain the state at the origin after Tc, regardless of the disturbance, we can

combine the controller (2) with a sliding mode controller as follows:

u =

{
− 1

(Tc−t)x for t ∈ [0,Tc)

−∆sign(x) otherwise.

Thus, we can summarize the following remarkable properties of this approach:

• For every nonzero initial condition, the origin is reached precisely at Tc, regard-
less of the initial conditions and without knowledge of the disturbance bound
(although notice that to maintain the state at the origin after Tc knowledge on
the disturbance bound is required).

Unfortunately, the approach also presents the following drawback:

• The time-varying gain of the controller, namely the factor
1

Tc − t
, tends to infin-

ity as the time tends to Tc. This is problematic under quantization or measure-
ment noise.

In the remainder of the chapter we develop a methodology to design controllers
that converge to the origin with a predefined convergence time bound. Additionally,
we provide sufficient conditions for our methodology to yield bounded time-varying
gains.
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3 Preliminaries and Problem Statement

3.1 Fixed-time stability and settling-time function

Consider the system
ẋ = f(x, t)+bnd(t), ∀t ≥ 0, (3)

where x ∈ Rn is the state of the system, t ∈ [0,+∞) is time, bn = [0, . . . ,0,1]T , and
d is a disturbance satisfying |d(t)| ≤ ∆ , for a constant d < ∞. 1

The set of admissible disturbances is denoted by Π . The solution of (3), with
disturbance d and initial condition x0 is denoted by x(t;x0,d). If d(t)≡ 0 we simply
write x(t;x0). Furthermore, consider the origin to be an equilibrium point of (3) for
every admissible disturbance, meaning that x(t;0,d) = 0 for all t ≥ 0.

Definition 1. (Settling-time function) Then, the settling-time function of system (3)
is defined as T : Rn → R̄+,

T (x0) := inf
{

ξ ≥ 0 : ∀d ∈ Π , lim
t→ξ

x(t;x0,d) = 0
}
.

Notice that Definition 1 admits T (x0) = ∞.

Definition 2. (Finite-time stability) The origin of system (3) is said to be finite-time
stable if it is asymptotically stable [12] and its settling-time function is finite for
every x0, i.e., T (x0)< ∞ for all x0 ∈ Rn.

Definition 3. (Fixed-time stability) The origin of system (3) is said to be fixed-time
stable if it is finite-time stable and its settling-time function T (x0) is uniformly
bounded on Rn, i.e. there exists Tmax ∈ R+ \ {0} such that supx0∈Rn T (x0) ≤ Tmax.
Then, Tmax is said to be a UBST of system (3).

3.2 Problem Statement

Consider a chain of integrators

1 In the spirit of Filippov’s interpretation of differential equations, solutions of (3) are understood as
any absolutely continuous function that satisfies the differential inclusion obtained by applying the
Filippov regularization to f(•,•) (See [9, Page 85]), allowing us to consider f(•,•) discontinuous
in the first argument. In the usual Filippov’s interpretation, it is assumed that ∥f(x, t)∥ has an
integrable majorant function of time for any x, ensuring existence and uniqueness of solutions in
forward time. However, in this work we deal with f(x, t) for which no majorant function exist, but
existence and uniqueness of solutions is still guaranteed by argument similar to [2]. In particular,
existence of solutions follows directly from the equivalence of solutions to a well-posed Filippov
system via the time-scale transformation.
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ẋi = xi+1, i = 1, . . . ,n−1
ẋn = u(x, t;Tc)+d(t) (4)

where the disturbance d(t) satisfies |d(t)| ≤ ∆ with a known constant ∆ , x =
[x1, . . . ,xn]

T . We aim to design a controller u(x, t;Tc) to steer the system to the ori-
gin before the desired time Tc a priori set by the user, i.e., the controller u(x, t;Tc) is
such that the origin of the closed-loop system is fixed-time stable with a predefined
UBST given by Tc.

Definition 4. The controller u(x, t;Tc) is called:

• a predefined-time controller if the settling-time function of the closed loop sys-
tem satisfies supx0∈Rn T (x0)≤ Tc < ∞.

• a prescribed-time controller if for all x0 ̸= 0 the settling-time function of the
closed loop system satisfies T (x0) = Tc < ∞.

Notice that prescribed-time controllers ensure convergence with an UBST given by
Tc. Thus, prescribed-time controllers are a subclass of predefined-time ones, with
the remarkable property that the settling-time function is precisely Tc.

Our approach is a hybrid controller of the form:

u(x, t;Tc) =

{
φ(x, t;Tc) for t ∈ [0,Tc)
w(x;∆) otherwise (5)

where the time-varying controller φ(x, t;Tc) should drive the state of the system to
the origin with a convergence time bound specified a priori by the parameter Tc and
the robust controller w(x;∆) should maintain the system at the origin in spite of
the bounded disturbance d(t). Since the design of robust sliding-mode controllers
w(x;∆) is well understood, see, e.g., [8, 19, 25, 20], in the rest of the chapter we
focus on the design of the controller φ(x, t;Tc) and restrict the analysis to the interval
[0,Tc).

4 First-order controllers

Consider the time-scale transformation

τ = ϕ(t) = ln((1−ηT−1
c t)−

1
α ) (6)

with constant positive parameters α , η , and Tc. Its inverse is given by

t = ϕ
−1(τ) = η

−1Tc (1− exp(−ατ)) ,

together with the time-varying gain

κ(t) :=
dτ

dt
=

η

α(Tc −ηt)
. (7)
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Such a time-scale transformation is illustrated in Fig. 1. Notice that as τ tends to
infinity t approaches η−1Tc, and limt→η−1T−

c
κ(t) = ∞. This property will be ex-

ploited to design an asymptotically stable system in τ-time and transform it into a
predefined-time system in t-time, as explained next.

η−1Tc

τ-time t-time

t-
tim

e

κ
(t
)

α = 0.1
α = 0.2
α = 1.0

Tc
η

Fig. 1 Example of a time-scale transformation (left) and its related time-varying gain (right) with
η = 1 and Tc = 1.

Consider a first-order system

ẋ = φ(x, t;Tc)+d(t), t ∈ [0,Tc) (8)

with the controller
φ(x, t;Tc) = κ(t)v(x), (9)

where x ∈ R, and v(x) is a virtual control to be defined below. System (8) in τ-time
is given by

dx
dτ

=
dx
dt

∣∣∣∣
t=η−1Tc(1−exp(−ατ))

· dt
dτ

where
dt
dτ

= αη
−1Tc exp(−ατ) = κ(ϕ−1(τ))−1. (10)

Thus,
κ(ϕ−1(τ)) =

η

αTc
exp(ατ) (11)

and
dx
dτ

= v(x)+αη
−1Tc exp(−ατ)d(ϕ−1(τ)). (12)

Notice that, since |d(ϕ−1(τ))| ≤ ∆ , then the disturbance term

αη
−1Tc exp(−ατ)d(ϕ−1(τ)) (13)

becomes vanishing in τ-time. Thus, if v(x) is chosen such that (12) is asymptotically
stable with a settling-time function T (x0), due to the time-scale transformation (6),
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the settling-time function of (8) is given by

T (x0) = η
−1Tc (1− exp(−αT (x0))) .

Thus, by an appropriate selection of v(x) and η , we can obtain a predefined-time
controller (5).

One drawback of the controller (9) is that, if v(x) contains discontinuous terms,
then φ(x, t;Tc) will have discontinuous terms that are increasing beyond what is
necessary to cancel out the disturbance effect, possibly producing large chattering.
For, instance, notice that with v(x) =−sign(x) and η = 1, (12) is finite-time stable
but φ(x, t;Tc) =− 1

α(Tc−t) sign(x).
To address this important issue, consider the following generalization of the con-

troller in (9), with an additional degree of freedom ρ ∈ [0,1]:

φ(x, t;Tc) = βκ(t)1−ρ ṽ(β−1
κ(t)ρ x)

where β ≥ (αη−1Tc)
1−ρ , κ(t) is given in (7), and ṽ(•) is an auxiliary controller to

be specified below. To analyze the stability of the closed-loop system, consider the
coordinate change:

z = β
−1

κ(t)ρ x,

together with the time-scale transformation in (6). Noticing that

κ̇(t)κ(t)−1 = ακ(t), (14)

the dynamics in the z-coordinates is given by

ż = ρκ(t)−1
κ̇(t)z+κ(t)ṽ(z)+β

−1
κ(t)ρ d(t)

= κ(t)
(
ραz+ ṽ(z)+β

−1
κ(t)ρ−1d(t)

)
.

Thus, from (10) and (11), it follows that the dynamics in z-coordinates and τ-time
is given by

dz
dτ

= ραz+ ṽ(z)+β
−1(αη

−1Tc)
1−ρ exp(−α(1−ρ)τ)d(ϕ−1(τ)).

Notice that

π(τ) = β
−1(αη

−1Tc)
1−ρ exp(−α(1−ρ)τ)d(ϕ−1(τ))

satisfies
|π(τ)| ≤ ∆ exp(−α(1−ρ)τ)

and, therefore, with the ρ parameter, we can specify the rate at which π(τ) vanishes.
Moreover, with ρ = 1, π(τ) is no longer a vanishing disturbance. Thus, choosing
the auxiliary controller as:

ṽ(z) = v(z)−αρz
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yields
dz
dτ

= v(z)+π(τ). (15)

Thus, we can take advantage of existing robust controllers for (15), and the settling-
time function will become

T (x0) = η
−1Tc

(
1− exp

(
−αT (β−1

κ(0)ρ x0)
))

.

Furthermore, with ρ = 1, if v(x) contains an additive discontinuous term (de-
signed to cope with the disturbance π(τ)), those terms will not be multiplied by
κ(t) in φ(x, t;Tc), and thus will not have its magnitude increased beyond what is
necessary to reject the disturbance without increasing chattering. For instance, with
ρ = 1, η = 1 and v(x) =−sign(x) we obtain:

φ(x, t;Tc) =−β sign(x)− 1
(Tc − t)

x.

4.1 Prescribed-time controllers

In this subsection, we focus on controllers v(x), such that the settling-time function
of the closed-loop system (12) satisfies T (x0) = ∞,∀x0 ̸= 0 and we choose η = 1.
Since in the τ-time the disturbance becomes vanishing, then, any Input-to-State Sta-
bilizing controller [23] can be applied as v(x) to stabilize system (12), even without
knowledge of the disturbance bound ∆ . This is because, for any bounded distur-
bance d(·), in τ-time the disturbance term (13) goes to zero as the τ-time goes to
infinity. However, knowledge on ∆ is required to maintain the state at the origin
after the time Tc.

Therefore, with the controller (5), the settling-time of the closed-loop system (8)
is

T (x0) = Tc,

i.e., the convergence occurs precisely at Tc regardless of the initial condition x0.
The following proposition provides a first-order prescribed-time controller with

minimum-energy among all controllers driving the system state from x(0) = x0 to
x(Tc) = 0.

Proposition 1. Let d(t) = 0. Then, the trajectory x(t) resulting from controller (5)
where v(x) = −x, and κ(t) is given in (7) with α = 1 and η = 1, under the con-
straints x(0) = x0 and x(Tc) = 0, minimizes the energy function

ETc =
∫ Tc

0
u(ξ )2dξ . (16)

Proof. Using ẋ(t) = u(t), one can build a Lagrangian for (16) as L(t,x, ẋ) = ẋ2.
Hence, the well-known Euler-Lagrange equations [13, Page 38]:
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d
dt

(
∂L
∂ ẋ

)
− ∂L

∂x
= 0

lead to ẍ = 0 or ẋ = 0,∀t ∈ (0,Tc). Thus, the resulting trajectories which minimize
(16) must be of the form x(t) = c1 + c2t,∀t ∈ [0,Tc] for some constants c1,c2. This,
along with boundary conditions x(0) = x0, x(Tc) = 0 leads to x(t) = x0(1−T−1

c t),
which satisfies ẋ = κ(t)v(x) =− 1

Tc−t x,∀t ∈ [0,Tc), concluding the proof. ■

The main drawback of prescribed-time controllers is that the origin of (8) is
reached as the time-varying gain tends to infinity, which is problematic under noise
or limited numerical precision. One may suggest, as a workaround to maintain the
time-varying gain bounded, to consider, instead of controller (5), the controller

u(x, t;Tc) =

{
φ(x, t;Tc) for t ∈ [0, tstop)
w(x;∆) otherwise

where tstop < Tc. Unfortunately, with φ(x, t;Tc) = −κ(t)x, the state at tstop grows
linearly with x0, as illustrated in the following example.

Example 1. Consider a prescribed-time controller with v(x)=−x, with η = 1, α = 1
and Tc = 1 and set tstop = 0.9. The trajectories for different initial conditions are
shown in Fig. 2; notice that x(tstop) = x0(1−T−1

c tstop) = 0.1x0. A similar case occurs
by taking

v(x) = c(1− exp(−|x|))sign(x), (17)

where c ≥ 1, with such controller, the origin of system (12) is asymptotically stable.
Thus, we take η = 1. A predefined-time controller (5) with v(x) as in (17) was
proposed in [14]. The trajectories with c = 10 for different initial conditions are
shown in Fig. 3, in this case x(tstop) is also an unbounded function of the initial
condition x0.

0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6 1e1

0 10 20 30 40 50 60
0

1

2

3

4

5

6

|x0|t-time

x(
t)

t st
op

x(
t st

op
)

Fig. 2 Simulation of the first-order prescribed-time controller, for different initial conditions, with
φ(x, t;Tc) = −κ(t)x and Tc = 1. It can be observed that, the state x(tstop) at a time tstop grows
linearly with |x0|. Here we choose tstop = 0.9.
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0

1
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0
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20

30

40

|x0|t-time

x(
t)

t st
op

x(
t st

op
)

Fig. 3 Simulation of the first-order prescribed-time controller, for different initial conditions, with
φ(x, t;Tc) = −κ(t)c(1− exp(−|x|))sign(x), with c = 10 and Tc = 1. It can be observed that, the
state x(tstop) at a time tstop grows with |x0|. Here we choose tstop = 0.9.

4.2 Predefined-time controllers with bounded time-varying gains

As discussed above, prescribed-time controllers have the remarkable property that
the settling-time function of the closed-loop system is precisely Tc. Still, they present
a major drawback: the time-varying gain grows to infinity as the trajectory goes
zero. Our approach to maintain the gain finite at the reaching time is to choose v(x)
such that T (x0)< ∞, i.e., such that the origin of (12) is finite-time stable. Then, the
origin of (8) is reached before the singularity in κ(t) occurs. Moreover, a bounded
time-varying gain can be obtained by choosing v(x) such that

sup
x0∈R

T (x0)≤ Tf < ∞

for a known Tf , i.e. such that the origin of (12) is fixed-time stable with a known
UBST. Then, by choosing

η =:
(
1− exp

(
−αTf

))
(18)

(notice that η < 1) with the controller (5), the origin is reached in a predefined-time
Tc and κ(t) is bounded by

κ(t)≤ κmax :=
exp(αTf )−1

αTc
for t ∈ [0,Tc), (19)

with a settling-time function bounded by Tc. Moreover, if supx0∈RT (x0) = Tf , then
supx0∈R T (x0) = Tc. Notice that the convergence is obtained before the desired time
Tc, instead of precisely at time Tc, as with prescribed-time controllers.
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4.3 On reducing the energy with time-varying gains

It is important to highlight that, in the first-order case, one can also obtain an au-
tonomous predefined-time controller based on a fixed-time stable system with a
known least UBST, such as those proposed in [16, 1], by using the trivial time-scale
transformation

t =
Tc

Tf
τ, (20)

which result in the predefined-time controller

u(t) =−
Tf

Tc
v(x)

where Tc is the least UBST. Fig. 4 illustrates how by using the time-scale transfor-
mation (6), the time-varying gain becomes bounded when a fixed-time controller
v(x) with UBST given by Tf is used, and it is contrasted with the static time-scale
transformation (20) and its associated gain for predefined-time control.

Our approach yields this trivial time-scaling as a special case as α tends to zero,
since limα→0 ϕ−1(τ) = Tc

Tf
τ and limα→0 κ(t) = Tf

Tc
.

t = η−1Tc (1− exp(−ατ))

τ-time t-time

t-
tim

e

κ
(t
)

η−1Tc

Tc

Tf Tc

κmax

Tc
η

t = Tc
Tf

τ

Tf
Tc

Fig. 4 Comparison of the proposed time-scale transformation against the trivial scalar scaling. On
the subplot on the left shows that if the system in τ-time has an UBST given by Tf , then the system
in the t-time has a UBST given by Tc. The subplot on the right illustrates how the time-varying gain
is uniformly bounded.

As shown in the following proposition, even in the case where there already
exists an autonomous fixed-time controller with least UBST, our approach provides
an extra degree of freedom to reduce the energy (16), used by the controller to drive
system (8) from x(0) = x0 to x(Tc) = 0, as well as to reduce the control magnitude
supt∈[0,Tc)(|u(t)|).

Proposition 2. Let the scalar system ẋ = v(x) be such that its settling-time function
satisfies supx0∈RT (x0) ≤ Tf < ∞ for a known Tf and v(•)2 is non decreasing for
non negative arguments. Using such v(x),Tf and some α ≥ 0, construct a control
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u(t) as in (5) with η defined in (18) for the scalar system ẋ = u. Denote the energy
E(α) = ETc as defined in (16) for such α ≥ 0. Then, there always exist α∗

x0
∈ R

which may depend on x0 such that E(α∗
x0
)≤ E(α),∀α ≥ 0. In particular, E(α∗

x0
)<

E(0),∀x0 ̸= 0.

Proof. First, write the energy as E(α) =
∫ Tc

0 κ(ξ )2v(x(ξ ;x0))
2dξ using (16), where

x(t;x0) is the solution of ẋ= u with x(0;x0) = x0. Now, make the change of variables
τ = ϕ(ξ ) from (6) which leads to

E(α) =
∫

ϕ(Tc)

0
κ(ϕ−1(τ))2v(x(ϕ−1(τ)))2

(
1

κ(ϕ−1(τ))
dτ

)
=

∫ Tf

0

(
η

αTc
exp(ατ)

)
v(x(ϕ−1(τ)))2dτ

where dτ = κ(ξ )dξ was used from (7). Now, note that x(ϕ−1(τ)) is the solution to
dx
dτ

= v(x) which follows from (12) since there is no disturbance. Hence, x(ϕ−1(τ))
does not depend on α . Now, it is straightforward to verify that:

lim
α→0

d
dα

(
η

αTc
exp(ατ)

)
=

Tf

Tc
(τ −Tf /2)

where we used η = 1− exp
(
−αTf

)
, from which it follows:

E ′(0) = lim
α→0

d
dα

∫ Tf

0

(
η

αTc
exp(ατ)

)
v(x(τ))2dτ

=
Tf

Tc

∫ Tf

0
(τ −Tf /2)v(x(τ))2dτ

=
Tf

Tc

∫ Tf /2

0
(τ −Tf /2)v(x(τ))2dτ +

Tf

Tc

∫ Tf

Tf /2
(τ −Tf /2)v(x(τ))2dτ

=−
Tf

Tc

∫ Tf /2

0
τv(x(Tf /2− τ))2dτ +

Tf

Tc

∫ Tf /2

0
τv(x(τ +Tf /2))2dτ

=
Tf

Tc

∫ Tf /2

0
τ
(
v(x(τ +Tf /2))2 − v(x(Tf /2− τ))2)dτ.

Now, consider x0 > 0. Hence, x(•) is a decreasing function and x(τ + Tf /2) ≤
x(Tf /2 − τ) ∀τ ∈ [0,Tf /2]. Therefore v(x(τ + Tf /2))2 ≤ v(x(Tf /2 − τ))2 ∀τ ∈
[0,Tf /2]. Hence, E ′(0) ≤ 0 with equality only if x0 = 0 which is excluded in the
proposition. Thus, one obtains the strict inequality E(α) < E(0) for α in some
neighborhood of 0. Now, note that limα→∞

η

αTc
exp(ατ)=+∞ so that limα→∞ E(α)=

+∞. Hence, there exists ᾱ > 0 sufficiently big, such that E(0) ≤ E(α),∀α ≥ ᾱ .
Combining these facts, there must exist an optimal α∗ > 0 such that E(α∗) ≤
E(α),∀α ≥ 0 due to continuity of E(α). The strict inequality E(α∗) < E(0) fol-
lows from α∗ > 0 concluding the proof. ■



Designing controllers with predefined convergence-time bound 15

Example 2. Let d(t) = 0 and the controller v(x) =−
(
(a|x|p +b|x|q)k

)
sign(x), with

a, b, p, q and k as in Theorem 2 in the appendix and ζ ≥ ∆ . Thus, Tf = γ with
γ as in (44) from that theorem. Then, with the controller (5) the origin is reached
in a predefined-time Tc and κmax = exp(αγ)−1

αTc
. Fig. 5 illustrates the trajectories for

the case when a = 4, b = 1
4 , k = 1, p = 0.9, q = 1.1 (it follows from Theorem 2,

that γ = 15.71) obtained for different selections of α , with x0 = 100, as well as
the Energy ETc and the control signal u(t) obtained in each case. Notice that, on
the one hand, a minimum energy prescribed-time controller is obtained in Propo-
sition 1, but requires time-varying gains that tend to infinity. On the other hand, a
predefined-time autonomous controller can be obtained by taking limα→0 κ(t), but
with an energy function significantly larger than with the prescribed-time controller.
However, by tuning α , the energy ETc and control magnitude supt∈[0,Tc)(|u(t)|) can
be significantly reduced while maintaining the time-varying gain bounded.
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)1 2

u(
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Fig. 5 Simulation of a first-order predefined-time controller with bounded time-varying gains.
Different values of the parameter alpha are shown, illustrating that a suitable selection of α allows
to reduce the energy and the control magnitude.

4.4 Redesigning fixed-time stabilizing controllers using bounded
time-varying gains: The second-order case

In subsection 4.2 we argued that, even in the case where a fixed-time controller with
a known least UBST already exists, our approach allows to reduce the total energy
required by the controller to drive the state of the system to the origin.

For higher-order systems, it is well known that the UBST of fixed-time au-
tonomous controllers, which are commonly based on Lyapunov analysis [15] or
homogeneity theory [3], is very conservative, resulting in over-engineered con-
trollers with large energy requirements (16) and large control signals. Thus, having
predefined-time controllers that allow reducing such over-engineering is even more
relevant in the high-order case.
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Frequently, robust fixed-time controllers v(z) are presented in the literature for
system:

dz1

dτ
= z2 (21)

dz2

dτ
= v(z)+d(t).

where d(t) satisfy |d| ≤ ∆ for a known positive constant ∆ . Assume that v(z) is such
that the origin of (21) is asymptotically stable and its settling-time function T (z0)
satisfies

sup
z0∈R2

T (z0)≤ Tf

for a known Tf < ∞. The approach described below can also be used to redesign
finite-time controllers whose initial condition is bounded with a known settling-time
function, see, e.g., [18].

To illustrate how to take advantage of such a controller and its estimation of the
settling-time function to obtain predefined-time controllers based on time-varying
gains, consider a more general predefined-time controller

φ(x, t;Tc) = βκ(t)2−ρ ṽ(β−1
κ(t)ρ x1,β

−1
κ(t)ρ−1x2) (22)

where ρ ∈ [0,2], β ≥ (αη−1Tc)
2−ρ , and ṽ(•,•) is an auxiliary control to be designed

below.
To analyze the behavior of the closed loop system under controller (22), for t ∈

[0,Tc), consider the coordinate change

yi = β
−1

κ(t)ρ−i+1xi, i = 1,2. (23)

Recalling the equality (14) then, the dynamics of the y-coordinates are given by

ẏ1 = κ(t)[αρy1 + y2]

ẏ2 = κ(t)[α(ρ −1)y2 + ṽ(y1,y2)+β
−1

κ(t)ρ−2d(t)].

Thus, considering the time-scale transformation (6), the dynamics in y-coordinates
and τ-time are given by

dy1

dτ
= αρy1 + y2 (24)

dy2

dτ
= α(ρ −1)y2 + ṽ(y1,y2)+π(τ)

where
π(τ) = β

−1(αη
−1Tc)

2−ρ exp(−α(2−ρ)τ)d(ϕ−1(τ))

satisfies |π(τ)| ≤∆ . Notice that, by choosing the ρ parameter, the rate at which π(τ)
vanishes can be varied; and with ρ = 2, π(τ) becomes a non-vanishing disturbance.
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Notice that, for the coordinate change (23) to be well defined, the auxiliary con-
trol ṽ(y1,y2), and the parameters ρ and α need to be chosen such that

lim
τ→∞

exp(−α(ρ +1− i)τ)yi(τ;y0,π[0,∞]) = 0 i = 1,2,

for every admissible disturbance π[0,∞], which guarantees that the coordinate change
maps the origin of the y-coordinates to the origin of the x-coordinates (and vice
versa). Such condition is trivially satisfied since the origin of (24) is finite-time
stable.

Now, to design ṽ(•,•) based on the controller v(•) consider the coordinate
change z1 = y1 and z2 = αρy1 + y2, which will take the system into a controller
canonical form:

dz1

dτ
= z2

dz2

dτ
= αρz2 +α(ρ −1)(z2 −αρz1)+ ṽ(z1,z2 −αρz1)+π(τ).

Thus, choosing ṽ(•,•) as

ṽ(z1,z2 −αρz1) = v(z)− c1z1 − c2z2

where

c1 =−α
2(ρ2 −ρ) (25)

c2 = α(2ρ −1)

yields system (21). Thus, taking η as in (18), with the controller (5)

φ(x, t;Tc) = βκ(t)2−ρ [v(β−1Qρ K−1
ρ (t)x)− [c1,c2]β

−1Qρ K−1
ρ (t)x] (26)

with ci, i = 1,2 is given by (25), Kρ(t) = diag(κ(t)−ρ ,κ(t)1−ρ) and

Qρ =

[
1 0

αρ 1

]
the origin of the closed-loop system is fixed-time stable and the settling-time func-
tion satisfies

T (x0) = η
−1Tc

(
1− exp

(
−αT (β−1Qρ Kρ(0)x0)

))
< Tc.

Moreover, the time-varying gain is bounded by (19).

Example 3 (Second-order system).
Consider the autonomous predefined-time controller given in Theorem 3, where:
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u(t) = ω(x1,x2) =−

[
γ2

Tf2
(a2 |σ |p +b2 |σ |q)k +

γ2
1

2T 2
f1

(
a1 +3b1x2

1
)
+ζ

]
sign(σ)

(27)
with

σ = x2 +

⌊
⌊x2⌉2 +

2γ2
1

T 2
f1

(
a1 ⌊x1⌉1 +b1 ⌊x1⌉3

)⌉1/2

,

which was introduced in [1] for a second-order perturbed system. Consider a dis-
turbance d(t) = sin(t), and let a1 = a2 = 4, b1 = b2 =

1
4 , p = 0.5, q = 1, k = 1.5,

Tf1 = Tf2 = 5, and ζ = 1. According to Theorem 3 in the appendix, γ1 and γ1 are
obtained as γ1 = 3.7081 and γ2 = 2, respectively, to obtain a predefined time con-
troller with UBST given by Tc = Tf1 +Tf2 = 10. A simulation for initial conditions
x1(0) = x2(0) = 50 is shown in the first row of Fig. 6.

Now, consider the predefined-time controller based on time-varying gains, given
in (26), using as a base controller v(z) = ω(z1,z2) the autonomous controller given
in (27). Notice that Tf = 10.

Therefore,

Qρ K−1
ρ (t)x =

[
κ(t)ρ x1

αρκ(t)ρ x1 +κ(t)ρ−1x2

]
and

φ(x, t;Tc) = βκ(t)2−ρ
ω
(
β
−1

κ(t)ρ x1,β
−1

αρκ(t)ρ x1 +β
−1

κ(t)ρ−1x2
)

− (c1 + c2αρ)κ(t)2x1 − c2κ(t)x2.

We choose α = 0.5, ρ = 2, β = 1 and Tc = 10. Thus, η = 0.9933 and κmax =
29.483. Therefore, the predefined-time controller (5) with φ(x, t;Tc) given by:

φ(x, t;Tc) = ω
(
κ(t)2x1,κ(t)2x1 +κ(t)x2

)
−κ(t)2x1 −

3
2

κ(t)x2

A simulation for initial conditions x1(0) = x2(0) = 50 is shown in the second
row of Fig. 6. Notice that, an improved transient behavior is obtained with the
non-autonomous controller when compared with the behavior of the autonomous
controller. Also notice that the control magnitude (second column) and the energy
function (third column) are significantly reduced in the time-varying case.

The tuning parameters of our redesign methodology are α , β , and ρ . The insight
on the function of such parameters on the redesigned controller is as follows: The
α parameter is associated with the time-scale transformation as illustrated in Fig. 1,
increasing its value helps to reduce the slack between the UBST and the true settling
time [10], however, it increases κmax, which impacts on chattering; Increasing the
β parameter allows to cope with disturbances d(t) of greater magnitude, as in the
τ-time the magnitude of the disturbance π(τ) is inversely proportional to the mag-
nitude of β . However, large values of β increase chattering; Finally, as mentioned
above, the ρ parameter allows to reduce chattering of the resulting predefined-time



Designing controllers with predefined convergence-time bound 19

time time time

A
ut

on
om

ou
s

N
on

-a
ut

on
om

ou
s

u(
t)

u(
t)

E
(t
)
=
( ∫ t 0

u(
ξ
)2 dξ

)1 2
E
(t
)
=
( ∫ t 0

u(
ξ
)2 dξ

)1 2x1
x2

x1
x2

Fig. 6 Comparison between the autonomous predefined-time controller proposed in [1] and the
proposed non-autonomous predefined-time controller as discussed in Example 3. In both cases the
UBST is selected as Tc = 10.

controller, in particular, when ρ = n discontinuous terms in the admissible auxil-
iary controller, does not appear multiplied by the increasing time-varying gain in
the redesigned controller.

5 Main Result: Arbitrary-order predefined-time controller

In this section, we present the extension to design arbitrary order predefined-time
controllers. Our approach, can be seen as a “redesign” methodology that starts
from an admissible auxiliary controller, and uses time-varying gains to achieve
predefined-time convergence. Let us introduce the notion of an admissible auxil-
iary controller.

Definition 5 (admissible auxiliary controller). Given parameters α ≥ 0, ρ ∈ [0,n]
and Tf ∈ R̄+, we say that v(z) is an admissible auxiliary controller if:

(i) for every disturbance π(τ) such that

|π(τ)| ≤ ∆ exp(−α(n−ρ)τ), (28)

it happens that the system

dz
dτ

= Jz+bn(v(z)+π(τ)) (29)

is asymptotically stable, where J := [ai j] ∈ Rn×n denotes a single Jordan block
with zero eigenvalue, i.e., a square matrix with ai j = 1 if j = i+1 and ai j = 0
otherwise, and the vector bi ∈Rn denotes a vector with one in the i-th entry and
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zeros otherwise. Moreover, the settling-time function satisfies

sup
z0∈Rn

T (z0)≤ Tf . (30)

(ii) for every admissible disturbance π[0,∞] ∈ Π[0,∞], it happens that

lim
τ→∞

exp(−α(ρ +1− i)τ)zi(τ;z0,π[0,∞]) = 0 i = 1, . . . ,n. (31)

Based on an admissible auxiliary controller, we next present the methodology to
design predefined-time controllers. Our main result is as follows.

Theorem 1. Given parameters α ≥ 0, ρ ∈ [0,n] and Tf ∈ R̄+, an admissible aux-
iliary controller v(z), and a desired convergence time Tc > 0, define the matrices
Dρ ,Qρ ∈ Rn×n as:

Dρ := diag{−ρ,1−ρ, . . . ,n−1−ρ}

and

Qρ :=


bT

1
bT

1 (J−αDρ)
...

bT
1 (J−αDρ)

n−1

 , (32)

and the time-varying matrix Kρ(t) as

Kρ(t) := diag(κ(t)−ρ ,κ(t)1−ρ , . . . ,κ(t)n−1−ρ),

where κ(t) is given by (7) with η as defined in (18). Then, with φ(x, t;Tc) given by:

φ(x, t;Tc) = βκ(t)n−ρ [v(β−1Qρ K−1
ρ (t)x)−β

−1bT
1 (J−αDρ)

nK−1
ρ (t)x]

where β ≥ (αη−1Tc)
n−ρ , the hybrid controller in (5) is fixed-time stable with a

settling time function given by

T (x0) = η
−1Tc

(
1− exp

(
−αT (β−1Qρ Kρ(0)x0)

))
. (33)

Proof. Our approach for the proof of Theorem 1 is to show that the auxiliary sys-
tem (29) and the closed-loop system (4) under controller (5), in the time interval
[0,Tc), are related by the coordinate change

z = β
−1Qρ K−1

ρ (t)x (34)

and the time-scale transformation (6).
Consider the time interval [0,Tc) and the time-varying coordinate change (34),

and notice that, since v(z) is an admissible auxiliary controller, then the coordinate
change is well defined. Then, the dynamics in the z-coordinates is given by
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ż = β
−1Qρ

dK−1
ρ (t)

dt
x+β

−1Qρ Kρ(t)ẋ.

Thus, it follows from the identity (41) and x = βKρ(t)Q−1
ρ z, that

ż =−ακ(t)Qρ Dρ Q−1
ρ z+β

−1Qρ Kρ(t)[Jx+bn(u+d(t))]

=−ακ(t)Qρ Dρ Q−1
ρ z+Qρ K−1

ρ (t)JKρ(t)Q−1
ρ z+β

−1Qρ K−1
ρ (t)bn(u+d(t)).

Moreover, applying identities (39) and (42) from Lemma 1 and Lemma 2, yields

ż =−ακ(t)Qρ Dρ Q−1
ρ z+κ(t)Qρ JQ−1

ρ z+β
−1Qρ K−1

ρ (t)bn(u+d(t))

= κ(t)[Qρ(J−αDρ)Q−1
ρ z]+β

−1Qρ K−1
ρ (t)bn(u+d(t))

= κ(t)(J+A)z+β
−1Qρ K−1

ρ (t)bn(u+d(t)).

From the identity K−1
ρ (t)bn = κ(t)ρ−n+1bn and Qρ bn = bn it follows that

ż = κ(t)(J+A)z+κ(t)ρ−n+1
β
−1Qρ bn(u+d(t))

= κ(t)(J+A)z+κ(t)ρ−n+1
β
−1bn(u+d(t))

= κ(t)(J+A)z+κ(t)bnv(z)−bnbT
1 (J−αDρ)

nQ−1
ρ z+κ(t)ρ−n+1

β
−1bnd(t)).

Since, according to (40) from Lemma 1, A = bnbT
1 (J−αDρ)

nQ−1
ρ , then

ż = κ(t)(J+A)z+κ(t)bnv(z)−Az+κ(t)ρ−n+1
β
−1bnd(t))

= κ(t)[Jz+bnv(z)+κ(t)ρ−n
β
−1bnd(t))].

Next, expressing the dynamics in the z-coordinates and τ-time, applying the time-
scale transformation (6), and noticing that

dz
dτ

=
dz
dt

∣∣∣∣
t=η−1Tc(1−exp(−ατ))

dt
dτ

where dt
dτ

is given by (10), yields system (29) with

π(τ) := β
−1(αη

−1Tc)
n−ρ exp(−α(n−ρ)τ)d(ϕ−1(τ)).

Notice that π(τ) satisfies (28). Since the origin of system (29) is asymptotically sta-
ble and its settling-time function satisfies (30), then the settling-time of the closed-
loop system under the controller (5) is given by (33), which completes the proof.
■

Corollary 1. Let v(z) be an auxiliary controller such that the closed-loop system
of (29) is asymptotically stable with settling time function T (z0) given by (30).
Then, under the controller (5):
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1. if T (z0) = ∞, then, the settling-time function (33) satisfies T (x0) = Tc. Thus,
controller (5) is a prescribed-time controller but limt→T (x0)− κ(t) = ∞.

2. if T (z0) < ∞, but Tf = ∞, then, the time-varying gain κ(T (x0)) is finite but
an unbounded function of the initial condition x0, i.e. supx0∈Rn κ(T (x0)) = ∞.
Thus, controller (5) is a predefined-time controller with a finite (but unbounded)
time-varying gain at the settling time.

3. if supz0∈Rn T (z0) ≤ Tf , with a known Tf < ∞, then, the settling-time func-

tion (33) satisfies T (x0) ≤ Tc, and κ(t) is bounded by the κmax := exp(αTf )−1
αTc

for t ∈ [0,Tc). Thus, controller (5) is a predefined-time controller with bounded
time-varying gain.

Example 4. Let n = 3 and assume that for parameters α ≥ 0, ρ = n and Tf ∈ R̄+, an
admissible auxiliary controller v(z) = ω(z1,z2,z3) is given (fixed-time autonomous
controllers with estimation of the settling time have been presented in [27, 5]). Thus,
matrices Qρ and Kρ(t) are computed as

Qρ =

 1 0 0
3α 1 0
9α2 5α 1

 and Kρ(t) = diag(κ(t)−3,κ(t)−2,κ(t)−1),

respectively. Thus,

Qρ K−1
ρ (t)x =

 κ(t)3x1
3ακ(t)3x1 +κ(t)2x2

9α2κ(t)3x1 +5ακ(t)2x2 +κ(t)x3


and

bT
1 (J−αDρ)

nK−1
ρ (t)x = 27α

3
κ(t)3x1 +19α

2
κ(t)2x2 +6ακ(t)x3.

Therefore, we obtain the predefined-time controller (5) with φ(x, t;Tc) given by:

φ(x, t;Tc)=ω
(
κ(t)3x1,3ακ(t)3x1 +κ(t)2x2,9α

2
κ(t)3x1 +5ακ(t)2x2 +κ(t)x3

)
−27α

3
κ(t)3x1 −19α

2
κ(t)2x2 −6ακ(t)x3

5.1 Uniform Lyapunov stability of predefined-time controllers

Since our approach for predefined-time control uses time-varying gains to redesign
an admissible auxiliary controller, it is essential to study the uniform (with respect
to time) stability. This property has robustness implications, for instance, with re-
spect to measurement noise, quantization, etc. We say that the origin of system (4)
is uniformly Lyapunov stable [12, Definition 4.4], if for every ε > 0 there exists
δ > 0 such that for all s ≥ 0 and every admissible disturbance, ||x(s)|| ≤ δ implies
||x(t)|| ≤ ε for all t ≥ s.
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Example 5. Let ∆ = 0, ρ = 0, α = 1, Tf = ∞ and v(z) = −18z1 − 9z2. Notice that
such v(z) is an admissible auxiliary controller, since under such controller the state
trajectory of the auxiliary system (29) is:

z1(τ;z0) = (2exp(−3t)− exp(−6t))z1(0)+
(

1
3

exp(−3t)− 1
3

exp(−6t)
)

z2(0)

z2(τ;z0) = (6exp(−6t)−6exp(−3t))z1(0)+(2exp(−6t)− exp(−3t))z2(0)

the origin of (29) is asymptotically stable with T (z0) = ∞, for every nonzero initial
condition z0. Moreover, it is easy to verify that (31) holds.

Thus,
v(β−1Qρ K−1

ρ (t)x) =−18x1 −9κ(t)−1x2

and
β
−1bT

1 (J−αDρ)
nK−1

ρ (t)x =−κ(t)−1x2

and using such admissible auxiliary controller we obtain, based on Theorem 1, the
prescribed-time controller:

φ(x, t;Tc) =−18κ(t)2x1 −8κ(t)x2. (35)

The trajectory of such prescribed-time controller, for Tc = 10 and initial condition
x1(0) = x2(0) = 10 is shown in the first column of Fig. 7.

Next, consider a disturbance

µ(t; td) =
{

0.1 if td ≤ t < td +0.001
0 otherwise (36)

where td < Tc, such that the prescribed-time controller becomes:

φ

(
x+

[
µ(t; td)

0

]
, t;Tc

)
,

with φ(x, t;Tc) as in (35).
The second and third column of Fig. 7 show the disturbance µ(t; td) (which could

occur due to quantization, noise, etc) and the trajectory for x2(t), respectively, for
different selections of td . As can be observed, an arbitrarily large transient can be
obtained if td is sufficiently close to Tc, which shows absence of uniform stability
and a lack of robustness to disturbances in the state.

Note that when n = 1, the change of variables between z and x in (34) does not
depend on time. Thus, if the dynamics of z in (21) is uniformly Lyapunov stable, this
property is transferred to x by continuity, as well. However, this reasoning fails with
n> 1 due to the time dependence of (34). In the following, we establish under which
conditions, uniform Lyapunov stability is attained for the origin of the closed-loop
system (4) with the controller in (5).
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Fig. 7 Simulation of Example 5, showing the lack of robustness to measurement noise of a
prescribed-time algorithm. On the left, the behavior of a prescribed control with Tc = 10 and with-
out disturbance. In the center, a set of pulse disturbances in (36). On the right, the behavior of the
closed-loop system under the prescribed control and in the presence of disturbance (36).

Proposition 3. Consider n > 1 and assume that the origin of the system (21) is
uniformly Lyapunov stable and 0 ≤ ρ < n− 1. Then, the origin of the closed-loop
system (4) with the controller in (5) is uniformly Lyapunov stable if and only if κ(t)
is uniformly bounded.

Proof. First, note that uniform Lyapunov stability for t ≥ Tc of (4) follows since the
controller (5) is time-independent for such t, and w(x,∆) is assumed to make the
origin of the system stable. Thus, we only need to analyse the uniform Lyapunov
stability property of (4) for t ∈ [0,Tc). Note that if the solution z(τ) of (21) is uni-
formly Lyapunov stable, then the same applies to z(ϕ(t)), ∀t ∈ [0,Tc). Recall that
the solution x(t) of (4) and z(ϕ(t)) are related through the transformation in (34)
for t ∈ [0,Tc). In addition, note that due to stability property of trajectories x(t) ob-
tained from Theorem 1, i.e. that x(Tc) = 0 regardless of the initial conditions and
disturbances, we can continue trajectories from t = Tc.

We start by showing that κ(t) uniformly bounded implies uniform Lyapunov
stability of the origin of system (4). Let 0 ≤ s < t < Tc and use Rayleigh’s inequality
in (34) to obtain:

βσ(Q−1
ρ )σ(Λρ(t))∥z(ϕ(t))∥ ≤ ∥x(t)∥ ≤ βσ(Q−1

ρ )σ(Λρ(t))∥z(ϕ(t))∥ (37)

where σ(•),σ(•) denote minimum and maximum singular values respectively. In
addition, note that uniformly bounded κ(t) implies that there exists 0 < λ ,λ ∈ R
such that

λ < σ(Kρ(t)) = min{κ(t)−ρ , . . . ,κ(t)n−ρ−1}
σ(Kρ(t)) = max{κ(t)−ρ , . . . ,κ(t)n−ρ−1} < λ ,

for any t ∈ [0,Tc]. Thus, (37) becomes:

βσ(Q−1
ρ )λ∥z(ϕ(t))∥ ≤ ∥x(t)∥ ≤ βσ(Q−1

ρ )λ∥z(ϕ(t))∥. (38)

Now, choose any ε > 0 and let εz = ε

(
βσ(Q−1

ρ )λ
)−1

and note that εz > 0 since

λ < +∞. For such εz > 0, there exists δz > 0 such that ∥z(ϕ(s))∥ ≤ δz implies
∥z(ϕ(t))∥ ≤ εz for ϕ(t)≥ ϕ(s) due to Lyapunov stablility and time invariance (and
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hence, uniform Lyapunov stability) of (21). Thus, in order to see how this property
is transferred to x, let δ = δzβσ(Q−1

ρ )λ . Hence, using the first inequality in (38)
it is obtained that ∥x(s)∥ ≤ δ = δzβσ(Q−1

ρ )λ implies ∥z(ϕ(s))∥ ≤ δz. This in turn
implies ∥z(ϕ(t))∥ ≤ εz. Using the second inequality in (38) we obtain ∥x(t)∥ ≤
βσ(Q−1

ρ )λεz = ε , showing uniform Lyapunov stability for the origin of the closed-
loop system (4) with the controller in (5).

Next, we show that if κ(t) is not bounded, then the origin of the closed-loop
system (4) is not uniformly Lyapunov stable for ρ ∈ [0,n− 1). In particular, we
will show that for any δ ,ε > 0, there exist s, t with 0 ≤ s < t ≤ Tc, an admissible
disturbance and a trajectory x of (4) which satisfies both ∥x(s)∥ ≤ δ and ∥x(t)∥> ε ,
which is the direct negation of the uniform Lyapunov stability statement. This means
that we only need to find a single trajectory of (4) which fails to fulfill the uniformity
bounds.

In this sense, we can focus on ∆ = 0 and consider, for fixed δ and arbitrary τ0 ≥
0, any trajectory z(τ) of (21) with z(τ0) = wQρ b1 with non-zero constant w with
|w| ≤ δ/(βκ(0)−ρ). The proof strategy is to show that one of the zero components
of x(s) with τ0 =ϕ(s) need to increase in magnitude at some later time s< t, enough
to make x(t) as large as desired thanks to the unboundedness of the gain.

To guarantee that one component of x(s) cannot remain at zero, we show that
there is no vector h = [h1, . . . ,hn]

T ∈Rn with hn = 0 such that d
dτ

Q−1
ρ z(τ)

∣∣∣
τ=τ0

= h

for this trajectory, meaning that the last component of x(s) cannot remain at the
origin. Assume the opposite, which implies that

h = Q−1
ρ

dz
dτ

∣∣∣∣
τ=τ0

= Q−1
ρ bnv(z(τ0))+wQ−1

ρ JQρ b1 = bnv(z(τ0))

since Q−1
ρ bn = bn and Q−1

ρ JQρ b1 = 0. However, this is impossible since hn = 0 but

v(z(τ0)) ̸= 0. Therefore, d
dτ

bT
n Q−1

ρ z(τ)
∣∣∣
τ=τ0

is non zero. The previous argument,

in addition to the fact that (21) is time-invariant and v(•) is continuous at z(τ0),
implies that there exist positive constants τ̃ , ε̃ , which only depend on δ , such that
|bT

n Q−1
ρ z(τ0 + τ̃)|> ε̃ .

Select now s ≥ 0 such that βκ(s)n−ρ−1ε̃ > ε which is possible since κ(•) is
unbounded and n − ρ − 1 > 0. Set τ0 = ϕ(s) and note that from (34), one then
obtains

x(s) = βKρ(s)Q−1
ρ z(ϕ(s)) = βKρ(s)Q−1

ρ z(τ0)

= βwKρ(s)b1 = βwκ(s)−ρ b1

and consequently ∥x(s)∥= β |w|κ(s)−ρ ≤ β |w|κ(0)−ρ ≤ δ . Moreover, one has for
t = ϕ−1(ϕ(s)+ τ̃)< Tc

xn(t) = bT
n x(t) = βκ(t)n−ρ−1bT

n Q−1
ρ z(ϕ(t))

= βκ(t)n−ρ−1bT
n Q−1

ρ z(τ0 + τ̃)
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and hence ∥x(t)∥ ≥ |xn(t)| ≥ βκ(t)n−ρ−1ε̃ ≥ βκ(s)n−ρ−1ε̃ > ε , since κ(t) is non
decreasing and n−ρ −1 > 0, completing the proof. ■

Proposition 3 implies that, with the proposed approach, no uniformly stable
prescribed-time controller can be obtained for a chain of integrators of order greater
than one. Ensuring uniform stability for predefined-time controllers, on the other
hand, may be achieved by ensuring that the time-varying gain stays bounded. Al-
though this proof is particular for our approach, the proof suggests that we can take
a similar path to show the non-uniformity of other prescribed-time control methods.
Since, as illustrated in Example 5, the lack of uniform stability implies an inherent
lack of robustness, then studying the uniform stability property in the prescribed-
time control literature is essential.

Example 6. Let us revisit the controller in Example 3 for a perturbed system with
disturbance d(t)= sin(t). Similarly as in Example 5 consider the disturbance µ(t; td)
in (36), such that the predefined-time controller becomes

φ

(
x+

[
µ(t; td)

0

]
, t;Tc

)
.

The second and third columns of Fig. 8 show the disturbance µ(t; td) (which could
occur due to quantization, noise, etc) and the trajectory for x2(t), respectively, for
different selections of td . As can be observed, contrary to the case in Example 5,
the transient behavior due to the perturbation remains bounded, no matter how close
to Tc the disturbance µ(t; td) occurs. Notice that according to Proposition 3 this
predefined-time controller is uniformly Lyapunov stable since the time-varying gain
is bounded.
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Fig. 8 Simulation of Example 6, showing robustness to measurement noise of a prescribed-time
algorithm with bounded time varying gains. On the left, the behavior of a prescribed control with
Tc = 10 and without disturbance. In the center, a set of pulse disturbances in (36). On the right,
the behavior of the closed-loop system under the prescribed control and in the presence of distur-
bance (36).
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6 Conclusion

This chapter presents a methodology to design robust controllers achieving fixed-
time stability with a desired upper bound for the settling time (UBST). We show that
the closed-loop system under the proposed controller is related to a suitable auxiliary
system through a time-varying coordinate change and a time-scale transformation.
The methodology is motivated by the analysis of the first-order case, where applica-
tion to a linear controller leads to a minimum energy solution and generally allows to
reduce control energy when redesigning other controllers. Depending on the conver-
gence properties of the resulting auxiliary system, interesting features are obtained
in the closed-loop system. For instance, obtaining a prescribed-time controller steers
the state to the origin in the desired time, regardless of the initial condition, but with
time-varying gains that tend to infinity. Alternatively, we present conditions under
which a predefined-time controller is obtained with bounded time-varying gains.

Since the proposed controller is time-varying, it is essential to study its uniform
stability properties. For this purpose, we show that uniform boundedness of the
time-varying gain is necessary and sufficient for uniform Lyapunov stability of the
closed-loop system obtained with our approach. It is moreover shown that such
boundedness of the gain can be achieved by redesigning an existing fixed-time con-
troller.
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7 Appendix

7.1 Auxiliary lemmas

Let us introduce the following Lemmas, on some properties of matrix Qρ and the
time-varying matrix Kρ(t).

Lemma 1. Let Dρ ∈ Rn×n and Qρ ∈ Rn×n be defined as in (32). Then, Qρ ∈ Rn×n

is a lower triangular matrix satisfying

J+A = Qρ(J−αDρ)Q−1
ρ (39)

where
A = bnbT

1 (J−αDρ)
nQ−1

ρ (40)

with bn = [0, · · · ,0,1]T ∈ Rn×1.
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Proof. Notice that by construction Qρ is a lower triangular matrix with ones over
the diagonal. Moreover, J is an upper shift matrix, thus

JQρ =


bT

1 (J−αDρ)
...

bT
1 (J−αDρ)

n−1

0T
n

 and JQρ +AQρ =


bT

1 (J−αDρ)
...

bT
1 (J−αDρ)

n−1

bT
1 (J−αDρ)

n


where 0n ∈Rn is a zero vector. Therefore, JQρ −AQρ = Qρ(J−αDρ) which com-
pletes the proof. ■

Lemma 2. Let κ(t) be given as in (7), with η as in (18), and let

Kρ(t) := diag(κ(t)−ρ ,κ(t)1−ρ , . . . ,κ(t)n−ρ−1),

where ρ ∈ [0,n]. Then, the following identities hold:

d
dt

Kρ(t)−1 =−ακ(t)Dρ Kρ(t)−1 (41)

K−1
ρ (t)JKρ(t) = κ(t)J. (42)

Proof. A direct calculation yields

d
dt

Kρ(t)−1 =
d
dt

diag(κ(t)ρ ,κ(t)ρ−1, . . . ,κ(t)ρ−n+1)

= κ̇(t)κ(t)−1diag(ρκ(t)ρ ,ρ −1κ(t)ρ−1, . . . ,ρ −n+1κ(t)ρ−n+1).

Since κ̇(t)κ(t)−1 = ακ(t), equation (41) follows trivially by definition of Dρ .
Now, to show that (42) holds, notice that since J is an upper shift matrix. Thus,

K−1
ρ (t)JKρ(t) = κ(t)K−1

ρ (t)



0 κ(t)−ρ 0 · · · 0 0
0 0 κ(t)1−ρ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · κ(t)n−3+ρ 0
0 0 0 · · · 0 κ(t)n−2+ρ

0 0 0 · · · 0 0


= κ(t)J,

which completes the proof. ■

7.2 Some admissible auxiliary controllers

Theorem 2. ([1, Theorem 3]) Consider a controller
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u =−
[
(a|x|p +b|x|q)k +ζ

]
sign(x), (43)

where ζ ≥ ∆ , a,b, p,q,k > 0 are system parameters which satisfy the constraints
kp < 1, and kq > 1. Then, the origin of (8) under the controller (43) is fixed-time
stable and the settling-time function satisfies supx0∈R T (x0) = γ , where

γ =
Γ (mp)Γ (mq)

akΓ (k)(q− p)

(a
b

)mp
, (44)

with mp =
1−kp
q−p and mq =

kq−1
q−p .

Theorem 3. ([1, Theorem 4]) Consider a second-order perturbed chain of integra-
tors, and let a1,a2,b1,b2, p,q,k > 0, kp < 1, kq > 1, Tf1 ,Tf2 > 0, ζ ≥ ∆ , and

γ1 =
Γ
( 1

4

)2

2a1/2
1 Γ

( 1
2

) (a1

b1

)1/4

, and γ2 =
Γ (mp)Γ (mq)

ak
2Γ (k)(q− p)

(
a2

b2

)mp

,

with mp =
1−kp
q−p and mq =

kq−1
q−p . If the control input is selected as

u =−

[
γ2

Tf2
(a2 |σ |p +b2 |σ |q)k +

γ2
1

2T 2
f1

(
a1 +3b1x2

1
)
+ζ

]
sign(σ),

where the sliding variable σ is defined as

σ = x2 +

⌊
⌊x2⌉2 +

2γ2
1

T 2
f1

(
a1 ⌊x1⌉1 +b1 ⌊x1⌉3

)⌉1/2

,

then the origin (x1,x2) = (0,0) of system (4), with n = 2, is fixed-time stable with
UBST given by Tf = Tf1 +Tf2 .
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